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Abstract—In a wide range of applications such as astronomy,
biology, and medical imaging, acquired data are often corrupted
by Poisson noise and blurring artifacts. Poisson noise is difficult
to eliminate due to its signal-dependent and multiplicative
properties. In this paper, a new adaptive Euler’s elastica
regularization model for blind restoration of Poisson images is
proposed. This model combines the advantages of an adaptive
weighted matrix and Euler’s elastica regularization, which can
mitigate the staircase effects while effectively preserving the
local features of the image. In addition, an efficient alternating
direction method of multipliers (ADMM) for solving this
nonconvex model is designed. A large number of experiments
are carried out on natural and synthetic images, respectively.
The related results show that the proposed method can not only
obtain a more accurate blur kernel but also improve the quality
of the recovered image significantly.

Index Terms—Blind restoration, Poisson noise, Euler’s elas-
tica regularization, Adaptive weighted matrix, ADMM

I. INTRODUCTION

DATA captured by the imaging sensor faces various
forms of degradation, with noise and blurring being the

most significant. Recent progress in fluorescence microscopy
[1], [2], positron emission tomography [3], and single pho-
ton emission computed tomography [4] has highlighted the
importance of studying Poisson noise in images. Poisson
distribution is a better fit for describing noise statistics
in photon counting systems compared to the conventional
Gaussian distribution. Poisson noise differs from Gaussian
noise as it is neither purely additive nor multiplicative.
It is a signal-dependent noise that varies with the pixel
intensity peak. This makes restoring images affected by
Poisson noise particularly challenging. Mathematically, the
model for image degradation caused by Poisson noise is
usually expressed as

f = P(Ku), (1)
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where f and u represent the degraded image and the original
clear image, respectively, and K denotes the convolution
matrix form of the point spread function (PSF), also referred
to as the blur kernel. The Poisson function captures the
process of Poisson noise degradation.

The inverse process of blurring is often called deconvo-
lution, which seeks to find the best estimates of K and
u from the degraded image f . The problem of deconvo-
lution can be classified into two types based on whether
prior knowledge of the PSF is available or not: non-blind
deconvolution and blind deconvolution. Numerous non-blind
deconvolution methods using regularization have been devel-
oped over time, such as TV regularization [5], [6], higher-
order TV regularization [7], fractional-order TV [8], total
generalized variation regularization [9], and curvature-based
regularization [10], [11].

In contrast to non-blind deconvolution, blind deconvolu-
tion is more complex due to the lack of prior knowledge
about the blur kernel, compounded by the nonlinear and non-
quadratic characteristics of the Poisson distribution. Early
research in this field focused on Expectation Maximization
(EM) algorithms. For instance, a method using the RL
algorithm, which is a specific form of the EM approach, has
been proposed in [12]. In this method, the PSF is initially
kept constant while RL iterations update the latent image,
and then the latent image is held steady while RL iterations
adjust the PSF. These two steps are repeated alternately
until a final result is achieved. In [13], the authors proposed
regularizing the latent image using a Huber-Markov random
field and implemented an alternating algorithm similar to that
described in [12] for iterative optimization of the latent image
and the PSF. The authors enhanced the traditional alternation
method in two ways, as described in [14] and [15]. First, they
introduced more efficient sparse-constrained regularization
by performing wavelet or small frame decomposition of
the latent image. Second, they employed the split Bregman
method [16] or the ADMM algorithm [17] to structure the
EM approach for estimating the latent image. Nonetheless,
the PSF continued to use a one-step delay scheme for
updating. In [18], the authors combined an l0 sparse prior
with TV regularization in blind deconvolution to recover the
latent image using a greedy analytic tracking algorithm. This
approach integrates the EM method for internal iterations,
with the PSF being similarly estimated using a delayed one-
step process. In [19], the authors proposed using FOTV
regularization to address both blur and Poisson noise, still
employing EM algorithm. However, these EM-based alternat-
ing optimization methods may lead to unsatisfactory results
when the energy distribution of the PSFs is complex, such
as in cases of PSFs induced by motion.

In [20], the authors used the l0 norm and TV of the image
gradient to regularize the latent image and PSF, respectively.
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They proposed a method that combines variable splitting and
Lagrange multipliers. Initially, the PSF is estimated using an
enhanced IPLS algorithm, followed by employing a variable
splitting method that includes an image smoothing operator
for image restoration. Additionally, with advances in machine
learning, deep learning has emerged as an effective tool
for blind restoration of Poisson images [21]. While deep
learning methods generally require substantial training data,
obtaining sufficient data in real-world blurring situations can
be challenging. Moreover, due to the unique nature of blurred
image restoration across different scenarios, the application
of deep learning is somewhat constrained.

In recent years, Euler’s elastica regularization has demon-
strated effectiveness in various applications, such as color
image restoration [22], image segmentation [23], and 3D
surface reconstruction [24], [25]. This approach has also been
applied to Poisson image deconvolution [26]. The authors
have introduced a Poisson image restoration model using
adaptive Euler’s elastica regularization, which mitigates the
staircase effects often associated with the TV model due to its
higher-order nature. This model effectively preserves image
features and structural details in smoothed regions.

Recently, Pang et al. [6], [27] introduced regularization
methods that use an adaptive weighted matrix combined
with a gradient operator for image denoising. The adap-
tive weighted matrix adjusts the orientation of the gradient
operator to favor higher weights, thereby more effectively
capturing the local features of the image. Building on our
recent research, in which we proposed a Gaussian image
blind restoration model based on adaptive Euler’s elastica
regularization and achieved improved restoration results [28],
we are inspired to develop a new adaptive Euler’s elas-
tica Poisson image blind restoration model. Furthermore,
instead of employing the traditional EM-based alternating
optimization algorithm, we design a more robust optimiza-
tion method known as the alternating direction method of
multipliers (ADMM). This approach transforms the original
Poisson image blind restoration problem into the alternating
computation of several subproblems. The key contributions
of this paper can be summarized as follows:

Models based on Euler’s elastica regularization are not
often applied to the blind restoration of Poisson images.
We introduce a novel adaptive Euler’s elastica regulariza-
tion model for blind deconvolution of Poisson images. By
incorporating an adaptive weighting matrix into the Euler’s
elastica regularization, the model becomes more adaptable
and robust. This approach allows for more effective mitiga-
tion of the staircase effects and helps preserve image details.

Numerous experiments on both natural and synthetic im-
ages are conducted to demonstrate the effectiveness of the
proposed model and algorithm. In the context of Poisson
image blind restoration, we compare our model against the
EM model and the FOTV model.

II. PROPOSED MODEL

Although the TV model is effective in maintaining sharp
edges in an image, it can often lead to unwanted staircase
effects in regions of uniform intensity. To address this issue,
higher-order models like curvature regularization have been
proposed. Drawing inspiration from the successful applica-
tion of curvature regularization, we introduce a new Poisson

blind restoration model as follows:

min
u,k

∑
i,j

g1(κ(ui,j))|T∇ui,j |+ β∥∇k∥1

+ λ

∫
Ω

(Ku− f logKu)dx.
(2)

Here,
g1(κ(ui,j)) = 1 + α | κ(ui,j) |, (3)

where α > 0 is a constant. In a two-dimensional curve, the
curvature κ can be expressed as a function of u, i.e.

κ(ui,j) = ∇ ·
(

∇ui,j

|∇ui,j |

)
. (4)

The adaptive weighted matrix T is defined as follows:

T(i, j) =

[
t1(i, j) 0

0 t2(i, j)

]

=

 1
1+ι|Gδ(i,j)∗∇xf(i,j)| 0

0 1
1+ι|Gδ(i,j)∗∇yf(i,j)|

 ,

(5)
where Gδ(·) stands for a two-dimensional Gaussian convo-
lution kernel, ι and δ are two tuning parameters. ∇xf and
∇yf signify the differences in the horizontal and vertical
directions, respectively.

By incorporating an adaptive weighted matrix into the
Euler’s elastica regularization, the model adapts more ef-
fectively to various image structures, resulting in superior
performance in recovering smooth images.

III. NUMERICAL SOLUTION

The direct solution of the nonconvex and nonsmooth
minimization problem (2) is exceedingly difficult due to its
inherent complexity. To address this issue, we develop an
efficient alternating direction method of multipliers (ADMM)
that simplifies the resolution of the original problem by
iteratively solving a series of interconnected subproblems in
an alternating fashion.

We first introduce four auxiliary variables p, q, w and g
to transform the original unconstrained problem (2) into the
following constrained optimization problem:

min
u,k,p,q,w,g

∑
i,j

g1 (κ (ui,j)) |qi,j |+ β∥w∥1

+ λ

∫
Ω

(g − f log g) dx,

s.t. p = ∇u,q = Tp,w = ∇k, g = Ku.

(6)

To solve (6), four Lagrangian multipliers λi = (λi1, λi2)
T ,

i = 1, 2, 3, and λ4 are introduced. Then we reformulate it
as a saddle point problem. The corresponding augmented
Lagrangian functional is

L(k, u,p,q,w, g;λ1,λ2,λ3, λ4)

=
∑
i,j

g1
(
κ
(
un
i,j

))
|qi,j |+ β∥w∥1 + λ

∫
Ω

(g − f log g)dx

+
r1
2
∥p−∇u− λ1∥22 +

r2
2
∥q−Tp− λ2∥22

+
r3
2
∥w −∇k − λ3∥22 +

r4
2
∥g −Ku− λ4∥22 ,

(7)

Engineering Letters

Volume 32, Issue 10, October 2024, Pages 1939-1946

 
______________________________________________________________________________________ 



where r1, r2, r3, r4 > 0 are penalty parameters. Given the
complexity of equation (6), which involves six subvariables,
we employ the ADMM to tackle each subvariable alternately
and iteratively. This approach ensures that each subvariable
is addressed in a systematic and efficient manner, facilitating
the overall solution process. Please refer to Algorithm 1 for
details.

Algorithm 1 ADMM for solving (2)
1. Input: a blurred and noisy image f ;
2. Parameters: λ, ι, δ, β, α, nMax and ϵ ∈ R ;
3. Initialization: u0 = f , n = 0, and p0 = λ0

1 = q0 = λ0
2

= w0 = λ0
3 = 0, g = λ0

4 = 0;
4.While n <nMax do (8)
5. Replace n with n+ 1;
6. If ∥ un − un−1 ∥F / ∥ un ∥F≤ ϵ, stop the iteration;
7. End while;
8. Return u∗ = un as the final recovered image and k∗ =

kn as the final recovered blur kernel.
The efficiency of Algorithm 1 for solving the optimization

problem (2) hinges on its ability to efficiently resolve the
subproblems.

• The k-subproblem can be reformulated as

kn+1 = argmin
k

r3
2

∥∥wn −∇k − λn
3

∥∥2
2

+
r4
2

∥∥gn −Kun − λn
4

∥∥2
2
.

(9)

Under periodic boundary conditions, the Euler-Lagrange
equation of this subproblem can be solved efficiently by fast
Fourier transform (FFT). It follows that

kn+1

=F−1

[
F
(
r4(U

n)T (λn
4 − gn)− r3 div(λ

n
3 −wn)

)
F (r3∆− r4(Un)TUn)

]
,

(10)

where F and F−1 denote the FFT and its inverse transform,
respectively, and ∆ is the Laplace operator.
• The u-subproblem can be written as

un+1 = argmin
u

r1
2
∥pn −∇u− λn

1∥
2
2

+
r4
2

∥∥gn −Kn+1u− λn
4

∥∥2
2
.

(11)

Using the FFT again, we have

un+1

=F−1

[
F
(
r4(K

n+1)T (λn
4 − gn)− r1div(λ

n
1 − pn)

)
F (r1∆− r4(Kn+1)TKn+1)

]
.

(12)

• The p-subproblem can be expressed as

pn+1 = argmin
p

r1
2

∥∥p−∇un+1 − λn
1

∥∥2
2

+
r2
2
∥qn −Tp− λn

2∥
2
2 .

(13)

Based on its optimality condition, the corresponding system
of linear equations can be derived as[

r1 + r2t
2
1 0

0 r1 + r2t
2
2

] [
pn+1
1

pn+1
2

]
=

[
r1
(
∇xu

n+1 + λn
11

)
+ r2t1 (q

n
1 − λn

21)
r1
(
∇yu

n+1 + λn
12

)
+ r2t2 (q

n
2 − λn

22)

]
.

(14)

From this equation, an explicit solution for pn+1 can be
obtained, namely

pn+1
1 =

r1
(
∇xu

n+1 + λn
11

)
+ r2t1 (q

n
1 − λn

21)

r1 + r2t21
,

pn+1
2 =

r1
(
∇yu

n+1 + λn
12

)
+ r2t2 (q

n
2 − λn

22)

r1 + r2t22
.

(15)

• The q-subproblem can be expressed as

qn+1 = argmin
q

∑
i,j

g1
(
κ(un

i,j)
)
|qi,j |

+
r2
2

∥∥q−Tpn+1 − λn
2

∥∥2
2
.

(16)

Its closed-form solution can then be computed by the soft-
threshold operator as follows:

qn+1
i,j = soft

(
(Tpn+1 + λn

2 )i,j ,
g1
(
κ(un

i,j)
)

r2

)

= max

(∣∣∣(Tpn+1 + λn
2

)
i,j

∣∣∣− g1
(
κ(un

i,j)
)

r2
, 0

)
· sign

(
(Tpn+1 + λn

2 )i,j
)
.

(17)
• The w-subproblem is as follows:

wn+1 = argmin
w

β∥w∥1 +
r3
2
∥w −∇kn+1 − λn

3∥22. (18)

Similarly, the solution of this subproblem can be given by
the soft-threshold operator, namely

wn+1
i,j = soft

(
(∇kn+1 + λn

3 )i,j ,
β

r3

)
. (19)

• The g-subproblem can be written as

gn+1 = argmin
g

λ

∫
Ω

(g − f log g)dx

+
r4
2

∥∥g −Kn+1un+1 − λn
4

∥∥2
2
.

(20)

By solving the quadratic equation, its solution can be ob-
tained,

gn+1 =
Kn+1un+1 + λn

4 − λ
r4

2

+

√√√√(Kn+1un+1 + λn
4 − λ

r4

2

)2

+
λf

r4
.

(21)

Note that the solution (u, k) produced by the proposed
model may not be unique. To achieve a unique and reason-
able solution, specific constraints need to be applied to u
and k. During the iteration process, we apply a sum of one
and non-negative constraints, similar to the blind restoration
of Gaussian images in [28]. These constraints help maintain
convergence. That is, we set∫

kn(x, y)dx = 1, (22)

un(x, y) =

{
un(x, y), un(x, y) ≥ 0,

0, else.
(23)

Additionally, we use dynamic threshold constraints to en-
hance the PSF, namely

kn(x, y) =

{
kn(x, y), kn(x, y) ≥ ξmax(kn) ,

0, else,
(24)
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kn+1 = argmin
k

L (k, un,pn,qn,wn, gn;λn
1 ,λ

n
2 ,λ

n
3 , λ

n
4 ) ,

un+1 = argmin
u

L
(
kn+1, u,pn,qn,wn, gn;λn

1 ,λ
n
2 ,λ

n
3 , λ

n
4

)
,

pn+1 = argmin
p

L
(
kn+1, un+1,p,qn,wn, gn;λn

1 ,λ
n
2 ,λ

n
3 , λ

n
4

)
,

qn+1 = argmin
q

L
(
kn+1, un+1,pn+1,q,wn, gn;λn

1 ,λ
n
2 ,λ

n
3 , λ

n
4

)
,

wn+1 = argmin
w

L
(
kn+1, un+1,pn+1,qn+1,w, gn;λn

1 ,λ
n
2 ,λ

n
3 , λ

n
4

)
,

gn+1 = argmin
g

L
(
kn+1, un+1,pn+1,qn+1,wn+1, g;λn

1 ,λ
n
2 ,λ

n
3 , λ

n
4

)
,

λn+1
1 = λn

1 +∇un+1 − pn+1, λn+1
2 = λn

2 +Tpn+1 − qn+1,

λn+1
3 = λn

3 +∇kn+1 −wn+1, λn+1
4 = λn

4 +Kn+1un+1 − gn+1.

(8)

where we denote max(kn) as the maximum value of the nth
estimated PSF. ξ is a small positive constant, which is set to
0.05 in our experiments.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We carry out extensive experiments on both natural and
synthetic images, comparing the numerical results and visual
outcomes with those obtained using the FOTV model [29]
and the EM model [30], in order to show the effectiveness
and superiority of our proposed method. For ease of descrip-
tion, we refer to our proposed method as AEEPBD.

All numerical experiments were performed in the MAT-
LAB environment on a PC equipped with a 2.50 GHz
Intel(R) Core(TM) i5-12500 CPU and 16 GB RAM. We use
peak-signal-to-noise ratio (PSNR), improved signal-to-noise
ratio (ISNR), and structural similarity (SSIM) as quantita-
tive metrics to assess the quality of the recovered images.
Specifically, the PSNR used in experiments is defined as

PSNR = 10 log10
P 2

1
MN

M∑
i=1

N∑
j=1

(ui,j − Ii,j)
2

, (25)

where P signifies the image peak, Ii,j and ui,j respectively
denote the pixel values of the clean and recovered images.
N and M represent the width and length of the image,
respectively. In the simulation experiments, we choose P =
255, 1000, and 3000, each peak representing a specific
Poisson noise level. A smaller peak value makes the image
appear noisier, thus increasing the difficulty of recovery. The
definition of ISNR is as follows:

ISNR = 10 log10
∥f − I∥2F
∥u− I∥2F

, (26)

where f stands for the degraded image. And SSIM is defined
by

SSIM =
(2µIµu + c1)(2σIu + c2)

(µI
2 + µu

2 + c1)(σI
2 + σu

2 + c2)
, (27)

where µI and µu denote the mean values of the images I and
u, respectively. σI and σu signify their standard deviations.
σIu represents the covariance between I and u. c1 and c2
are two positive constants that prevent a zero denominator
from occurring. The relative error is calculated by

R(un) =
∥un − un−1∥F

∥un∥F
. (28)

In our experiments, the iteration will be terminated when the
relative error R(un) ≤ 10−4 or iteration reaches 500 steps.

Four test images are chosen in experiments, including nat-
ural images (“Satellite” (128×128), “Spine” (490×367)) and
synthetic images (“Brain” (210×210), “Triangle” (254×214)),
as shown in Fig. 1.

(a) Satellite (b) Brain

(c) Spine (d) Triangle

Fig. 1. Test images.

We use the “fspecial” command in MATLAB to add
different types of blur kernels to the image. Specifically, we
utilize Gaussian blur (fspecial(‘gaussian’, 7, 10)) and motion
blur (fspecial(‘motion’, 11, 45)), as demonstrated in Fig. 2.

(a) linear motion (b) Gaussian
Fig. 2. Blur kernels for image degradation.

For Poisson image blind restoration, multiple parameters
in the proposed AEEPBD need to be adjusted to achieve
the optimal restoration effect. Specifically, a trial-and-error
approach is employed for the gradual adjustment of parame-
ters. The specific steps are as follows. We begin with initial
estimates for the model and algorithm parameters based on

Engineering Letters

Volume 32, Issue 10, October 2024, Pages 1939-1946

 
______________________________________________________________________________________ 



experience. Then we adjust each parameter incrementally
within a reasonable range and test the model’s performance
using PSNR. Further, based on the performance evaluation,
we tune the parameters that seem to have the most significant
impact on the restoration quality. Finally, we repeat the above
two steps until the optimal set of parameters that maximizes
the quality of the restored image is found. The parameters
included in the other two comparison methods are adjusted
using the same strategy described above.

During the parameter tuning process, we found that λ,
β, α, ι, δ have a significant influence on the results. λ is
used to control the balance between the fidelity term and the
regularization term, and we set λ ∈ [2 × 102, 2.5 × 103]. β
is a regularization parameter about the blur kernel, which
affects the diffusion of the PSF. In the experiments, we
select β ∈ [1 × 102, 2 × 103]. Additionally, α is used to
balance the curvature term and the length, and its value
should be chosen reasonably in order to retain more image
details. And its value is selected as α ∈ [1× 10−2, 1.5]. The
parameters ι and δ are from the adaptive weighted matrix. ι is
a tuning parameter used to control the local adaptivity and δ
means the standard deviation. Their values can be referred to
[31]. r1, r2, r3, r4 are four penalty parameters that affect the
convergence speed and stability of the proposed algorithm.
We choose r1 ∈ [1 × 10−3, 2.5], r2 ∈ [1 × 10−2, 4], r3 ∈
[1 × 10−4, 12]. During the parameter tuning process, we
usually set the value of r4 to a multiple of 5. Tables I-IV list
the corresponding numerical results of the three approaches
on four test images, respectively. These results show that
the AEEPBD has better performance in Poisson image blind
restoration.

TABLE I Numerical results obtained using different models for
“Satellite” images under different types of blur and noise levels.

Blur P Model PSNR ISNR SSIM
Motion 3000 EM 25.22 5.37 0.900

FOTV 25.63 5.78 0.902
AEEPBD 25.95 6.10 0.904

1000 EM 24.16 4.35 0.895
FOTV 24.62 4.81 0.900
AEEPBD 24.84 5.03 0.900

255 EM 22.89 3.21 0.919
FOTV 23.20 3.52 0.924
AEEPBD 23.40 3.72 0.926

Gaussian 3000 EM 24.57 3.38 0.853
FOTV 25.15 3.96 0.863
AEEPBD 25.36 4.17 0.875

1000 EM 23.15 3.52 0.859
FOTV 24.03 4.40 0.867
AEEPBD 24.21 4.58 0.871

255 EM 20.37 3.15 0.860
FOTV 21.28 4.06 0.867
AEEPBD 21.45 4.32 0.870

Note: Bold indicates the optimal value for each index.

To evaluate the quality of the images recovered through
different methods, visual images are provided for each test
image, including the recovered image, the recovered blur
kernel, the locally enlarged image, and the residual image
(see Figs. 3-6). From these figures, we observe that when

TABLE II Numerical results acquired by different models for
“Spine” images under different types of blur and noise levels.

Blur P Model PSNR ISNR SSIM
Motion 3000 EM 35.07 6.93 0.970

FOTV 35.45 7.31 0.977
AEEPBD 35.67 7.53 0.983

1000 EM 33.70 6.45 0.954
FOTV 34.15 6.90 0.960
AEEPBD 34.36 7.11 0.963

255 EM 32.75 5.76 0.961
FOTV 33.06 6.07 0.970
AEEPBD 33.33 6.34 0.973

Gaussian 3000 EM 38.42 7.17 0.971
FOTV 38.84 7.59 0.980
AEEPBD 39.14 7.89 0.982

1000 EM 37.27 6.89 0.953
FOTV 37.52 7.14 0.961
AEEPBD 37.80 7.42 0.964

255 EM 34.93 7.11 0.961
FOTV 35.35 7.53 0.969
AEEPBD 35.60 7.78 0.970

TABLE III Numerical results obtained via different models for
“Brain” images under different types of blur and noise levels.

Blur P Model PSNR ISNR SSIM
Motion 3000 EM 22.12 4.03 0.828

FOTV 22.56 4.47 0.834
AEEPBD 22.92 4.83 0.838

1000 EM 21.89 3.84 0.842
FOTV 22.31 4.25 0.847
AEEPBD 22.62 4.57 0.850

255 EM 21.57 3.68 0.869
FOTV 21.92 4.03 0.871
AEEPBD 22.11 4.22 0.874

Gaussian 3000 EM 23.64 5.38 0.836
FOTV 24.15 5.89 0.840
AEEPBD 24.38 6.12 0.843

1000 EM 22.74 4.53 0.828
FOTV 23.18 4.97 0.844
AEEPBD 23.34 5.13 0.845

255 EM 22.41 4.30 0.817
FOTV 22.82 4.71 0.838
AEEPBD 22.96 4.85 0.838

the added blur is the same, the performance of each method
diminishes as the peak value decreases. This decline occurs
because, regardless of the robustness of the algorithm, high-
level noise in blurry images often leads to low-quality
outcomes in blind image restoration. Nevertheless, AEEPBD
consistently achieves the most favorable recovery results,
particularly at high noise levels. In Fig. 3, it can be seen
that AEEPBD outperforms the FOTV and EM models in
eliminating noise and blur, resulting in clearer restoration
results. Specifically, we observe from the body part of the
“Satellite” image that the restoration result of the EM model
is excessively blurred, leading to the loss of many details,
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TABLE IV Numerical results gained through different models for
“Triangle” images under different types of blur and noise levels.

Blur P Model PSNR ISNR SSIM
Motion 3000 EM 36.46 14.47 0.978

FOTV 36.87 14.88 0.990
AEEPBD 37.13 15.14 0.997

1000 EM 35.36 11.32 0.981
FOTV 35.50 11.77 0.986
AEEPBD 35.75 12.02 0.989

255 EM 30.15 9.45 0.979
FOTV 30.47 9.77 0.993
AEEPBD 30.68 9.98 0.995

Gaussian 3000 EM 36.41 14.88 0.985
FOTV 36.90 15.37 0.991
AEEPBD 37.15 15.62 0.994

1000 EM 33.05 13.24 0.979
FOTV 35.02 13.59 0.982
AEEPBD 35.24 13.81 0.987

255 EM 32.29 11.31 0.971
FOTV 32.72 11.74 0.991
AEEPBD 32.91 11.93 0.991

(a) P=3000 (b) EM (c) FOTV (d) AEEPBD

(e) P=1000 (f) EM (g) FOTV (h) AEEPBD

(i) P=255 (j) EM (k) FOTV (l) AEEPBD

Fig. 3. Blind restoration results obtained using different methods for
“Satellite” images with linear motion blur at different peak values:
P=3000 (rows 1, 2), P=1000 (rows 3, 4), and P=255 (rows 5, 6).

while the restoration result of the FOTV model exhibits
noticeable staircase effects. However, due to the utilization of
a high-order regularization in AEEPBD, the staircase effects
are mitigated to some extent, while preserving a significant
amount of image details. In Fig. 4, when the peak level is
255, it is evident that the blur kernel restored by AEEPBD
is closer to the original blur kernel, and due to the presence
of the adaptive weighted matrix, the local structure of the
image is better preserved.

(a) P=3000 (b) EM (c) FOTV (d) AEEPBD

(e) P=1000 (f) EM (g) FOTV (h) AEEPBD

(i) P=255 (j) EM (k) FOTV (l) AEEPBD

Fig. 4. Blind restoration results acquired by different approaches
for “Spine” images with Gaussian blur at different peak values:
P=3000 (rows 1, 2), P=1000 (rows 3, 4), and P=255 (rows 5, 6).

Figs. 5 and 6 present the restored images, the residual
images, and the recovered blur kernels for the synthetic
images. Notably, the images recovered by AEEPBD appear
smoother with sharper edges, offering significant advantages
for PSF estimation. Contrastingly, we observe from the resid-
ual images that EM and FOTV struggle to recover most struc-
tural details, resulting in poor edge maintenance. AEEPBD
manages to mitigate the staircase effects to some extent. This
improvement is attributed to the adaptive weighted matrix
employed by AEEPBD, which adjusts the direction of the
gradient operator to tend toward larger weights, thereby
enhancing the clarity of image local details. Additionally,
the proposed method enhances the image contrast while
removing noise, particularly noticeable in the “Brain” image.
From the restored blur kernels, compared to EM and FOTV,
the blur kernel restored by AEEPBD is closer to the original
one.
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(a) EM (b) FOTV (c) AEEPBD

(d) EM (e) FOTV (f) AEEPBD

(g) EM (h) FOTV (i) AEEPBD

Fig. 5. Blind restoration results obtained by diverse methods for
“Brain” images with linear motion blur at different peak values:
P=3000 (rows 1, 2), P=1000 (rows 3, 4), and P=255 (rows 5, 6).

V. CONCLUSION

In this paper, we proposed a novel blind restoration model
for Poisson images based on the adaptive Euler’s elastica reg-
ularization. Furthermore, we developed an efficient ADMM
to solve it. Experimental results on both natural and synthetic
images demonstrated that compared to other state-of-the-art
methods, AEEPBD achieved better restoration effects, even
in the presence of complex energy distributions in PSFs.
In the future, we plan to explore acceleration techniques to
further reduce computational costs. Additionally, we intend
to extend the adaptive Euler’s elastica regularization to other
image processing challenges, such as image segmentation,
hyperspectral image super-resolution, and hyperspectral im-
age unmixing.

(a) EM (b) FOTV (c) AEEPBD

(d) EM (e) FOTV (f) AEEPBD

(g) EM (h) FOTV (i) AEEPBD

Fig. 6. Blind restoration results obtained by diverse approaches
for “Triangle” images with Gaussian blur at different peak values:
P=3000 (rows 1, 2), P=1000 (rows 3, 4), and P=255 (rows 5, 6).
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