A **Semantic SLAM Integrated with Enhanced**
 YOLOv7 Target Detection Algorithm
 ZhangFang Hu, FangYu Li, JiXiang Shen
 Abstract—This paper proposes a semantic SLAM integrated relies on understanding the environment A Semantic SLAM Integrated with
YOLOv7 Target Detection Algor
ZhangFang Hu, FangYu Li, JiXiang Shen
ZhangFang Hu, FangYu Li, JiXiang Shen
Matract—This paper proposes a semantic SLAM integrated
with an enhanced YOLOv7 targe Engineering Letters

A Semantic SLAM Integrated with Enhanced

YOLOv7 Target Detection Algorithm

ZhangFang Hu, FangYu Li, JiXiang Shen

real-time and robust. Traditional visual SLAM primarily

real-time and robust. Tradit Engineering Letters

emantic SLAM Integrated with Enhanced

YOLOv7 Target Detection Algorithm

ZhangFang Hu, FangYu Li, JiXiang Shen

real-time and robust. Traditional visual SLAM primarily

real-time and robust. Tradition Engineering Letters

SLAM Integrated with Enhanced

Target Detection Algorithm

ZhangFang Hu, FangYu Li, JiXiang Shen

real-time and robust. Traditional visual SLAM primar

real-time and robust. Traditional visual SLAM pri

address the issue of image blurring caused by robot movement
 address the issue of image blurring caused by robot movement
 address the issue of image blurring caused by robot movement
 address the issue of image bl and camera shake, we have incorporated an image incorporation of the resulting images are more clearer. In the feature shake, we have incorporated an image enhancement module before the tracking thread. Consequently, the EXECTION / LATGET DETECTION

ZhangFang Hu, FangYu Li, JiXiang SI
 Abstract—This paper proposes a semantic SLAM integrated

with an enhanced YOLOv7 target detection algorithm. To

address the issue of image blurring cau **Example 19 and Consequently,** The resulting images are more clearer. In the feature of the resulting images are more clearer. In the feature of image by the resulting cause of image by root movement of the and camera sha ZhangFang Hu, FangYu Li, JiXiang Shen
real-time and robust.
Mintegrated relies on understanding
with an enhanced YOLOv7 target detection algorithm. To
features of images [6],
address the issue of image blurring caused by r **ChangFang Hu, FangYu Li, JiXiang Shen**
 cal-time and robust.
 cal-time and robust
 cal-time and robust
 cal-time and robust
 cal-time and robust
 cal-time and robustive in the influence
 cal-time and robustiv ZhangFang Hu, FangYu Li, JiXiang Shen
 Abstract—This paper proposes a semantic SLAM integrated

with an enhanced YOLOv7 target detection algorithm. To

address the issue of image blurring caused by robot movement

and ca *POLORY* **Abstract—This paper proposes a semantic SLAM integrated** relies on understanding the with an enhanced YOLOv7 target detection algorithm. To features of images [6], which address the issue of image blurring caused *i***m and robust.

integrated integrated i** cal-time and robust.
 integrated i relies on understanding
 integrated i relies on understanding
 integrated i relies of **images** lurring caused by robus movemen *followith* **an enhanced YOLOv7 target detection algorithm. To with an enhanced YOLOv7 target detection algorithm. To features of images [6], whice and camera shake, we have incorporated an image burring cause it only foc Abstract—This paper proposes a semantic SLAM integrated**

with an enhanced YOLOv7 target detection algorithm. To

seal cannot cannot and carres of images [6], whis

and camera shake, we have incorporated an image

enhance **Provided and the system in Super provides a sensation Example and canners are the solutions of images [6],** and canners hake, we have incorporated an image invironment. Tradition enhancement module before the tracking thr What are unauthed TOLOW arget detection and the similar semantic SLAM.

Indees the correct of the compared to the care of image burring caused by robot movement because it only focuses on geonal

and camera shake, we have and cameas ue issue of image butting caused by root invertint. Traditional VS
and camera shake, we have incorporated an image environment. Traditional VS
the resulting images are more clearer. In the feature extraction
can and callera shake, we have incorporated an
enhancement module before the tracking thread. Consect
the resulting images are more clearer. In the feature ext
stage, we introduce adaptive thresholds to improve the s
capabilit **INTEONICTION**
 INTEONICTION
 INSPECTED: INCREDUCTION
 INSPECTED: INCREDUCTION
 IDENTIFY AND SECUTE TO THE CONSEQUENT
 INSPECTED: INCREDUCTION
 IDENTIFY AND SECUTE IN THE CONSEQUENT
 INSPECTED: THE CONSEQUENT **Example 19 and the comparison of dynamic displane capability in feature point extraction. To minimize the influence** automob
 adaptive thresholds on this system, we employ an enhanced
 POLOv7 algorithm to detect dynam It is system, we employ an enhanced
to detect dynamic targets. Then, we
ipolar constraint to eliminate dynamic
dy, We evaluated our system with five
the TUM dataset, and compared with
tem improves more than 91% in accuracy grate it with epipolar constraint to eliminate dynamic

urge points. Finally, We evaluated our system with five

ences taken from the TUM dataset, and compared with

ences taken from the TUM dataset, and compared with

the

refers to a process where a robot, without any prior

references than from the TUM dataset, and compared with five

in B-SLAM3, our system improves more than 91% in accuracy,

capability to comprehend the de-

to 98%. More sequences taken from the TUM dataset, and one pared with

ORB-SLAM3, our system improves more than 91% in accuracy, capability to comprehend the environment

or to 98%. Moreover, compared to similar semantic SLAM fails to ORESAMIN, our system improves more than 91% in accuracy, capacing to 98%. Moreover, compared to similar semantic SLAM fails to meet the demands for systems, our system offers improved accuracy as well as the current era of used, researchers divide SLAM into Laser SLAM (LS) and

visual SLAM (WS). Among them, VS has the benefits of traditional visual

visual SLAM into Laser SLAM into Laser SLAM and a prevalence of the entimies of traditional v Finance of the terms and many and the terms of traditional visual states of minimize the performance.
 Interns and the performance SLAM, image enhancement, designed for dynamic environments, the tem dynamic environments, *Index Terms*—semantic SLAM, image enhancement,

adaptive thresholds, YOLOv7, epipolar constraint

in dynamic environments, the

to minimize the influence of more system by excluding feature

position of more system by exc *Index Terms*—semantic SLAM, image enhancement,
adaptive thresholds, YOLOv7, epipolar constraint
to minimize the influence
system by excluding feat
I. INTRODUCTION
surrounding feat
objects. This challenge is
expectinc-ba
o adaptive thresholds, YOLOv7, epipolar constraint

to minimize the influ

system by excluding

Sy I. INTRODUCTION

I. INTRODUCTION

System by excluding feature

objects. This challenge is

objects. This challenge is

objects. This challenge is

approaches: geometric-base

information, simultaneously localizes itself an I. INTRODUCTION

System by exaction

objects. This challenge

information, simultaneously localization and Mapping (SLAM)

information, simultaneously localizes itself and constructs a

map of its surrounding area[1]. Base 1. INTRODUCTION

1. INTRODUCTION

1. INTRODUCTION

information, simultaneously localizes itself and constructs a

green information, simultaneously localizes itself and constructs a

deep

used, researchers divide SLAM int **IMULTANEOUS** Localization and Mapping (SLAM) applycaties. geometry-based dynamic volume of its surrounding areal [1]. Based on the ypes of sensors of sensors of surrounding and constructs and constructs and specific tech sual SLAM (VS). Among them, VS has the benefits of

duced expenses and access to obtain more data from

rroundings, which can give mobile robots stronger

rroundings, which can give mobile robots stronger

experiment, such From Sucheme, such as the Rand

in the detect expenses and access to obtain more data from

informulation (RANSAC [8]). In additive

introducing supported in particular political replications, visual SLAM needs to be

Manu SIMULTANEOUS Localization and Mapping (SLAM) approaches:
refers to a process where a robot, without any prior
specific te

Engine Dasse Stroke and Formular Corant No. Cstc2017jeyjAX0212), and the Science and Technology filtering of Research Program of Chongqing Municipal Education Commission (KJ1704072).

Zhangfang Hu is a Professor at the Key Chonging, 400065, China (e-mail: s2204310665, China (e-mail: s220432006@stu.cqupt.edu.cn)

Chongqing, 400065, China (e-mail: 3565207151@qq.com)

Frangyn Li is a graduate student of the School of Optoelectronic Engineering,

real-time and robust. Traditional visual SLAM primarily
ru Li, JiXiang Shen
real-time and robust. Traditional visual SLAM primarily
relies on understanding the environment through geometric
features of images [6], which ha relies on **Michan Endine Conder**
 relies on Michan Algorithm
 relies on understanding the environment through geometric
 relies on understanding the environment through geometric
 features of images [6], which has Summing the Control of the Discreed Stection Algorithm

Full, JiXiang Shen

Full, JiXiang Shen

Full is shared and robust. Traditional visual SLAM primarily

relies on understanding the environment through geometric

featu Example 1920 With Enhanced

Stection Algorithm

Tu Li, JiXiang Shen

real-time and robust. Traditional visual SLAM primarily

relies on understanding the environment through geometric

features of images [6], which has hig Exact WITH ETHIMITS

Exact WITH ETHIMITS

The CONSTRIMENT CONSTRIMENT CULTURE (The and robust. Traditional visual SLAM primarily

relies on understanding the environment through geometric

features of images [6], which has **Example 18 Stationary School Algorithm**

Stationary Shen

For Li, JiXiang Shen

For an and robust. Traditional visual SLAM primarily

relies on understanding the environment through geometric

features of images [6], whic FICCIIOII AIGOI IUIIII
real-time and robust. Traditional visual SLAM primarily
relies on understanding the environment through geometric
features of images [6], which has high real-time performance
because it only focuses The U.S. In Sixtem and The authorius State the sentence of magnetic scattering fields on understanding the environment through geometric features of images [6], which has high real-time performance because it only focuses The Valuety Comparison of the accuracy of VS systems.
Consequently relies on understanding the environment through geometric features of images [6], which has high real-time performance because it only focuses on geometric The U. F. JiXiang Shen

real-time and robust. Traditional visual SLAM primarily

relies on understanding the environment through geometric

features of images [6], which has high real-time performance

because it only focu real-time and robust. Traditional visual SLAM primarily
relies on understanding the environment through geometric
features of images [6], which has high real-time performance
because it only focuses on geometric features i real-time and robust. Traditional visual SLAM primarily
relies on understanding the environment through geometric
features of images [6], which has high real-time performance
because it only focuses on geometric features i real-time and robust. Traditional visual SLAM primarily
relies on understanding the environment through geometric
features of images [6], which has high real-time performance
because it only focuses on geometric features i relies on understanding the environment through geometric
features of images [6], which has high real-time performance
because it only focuses on geometric features in the
environment. Traditional VS relies on the assumpti features of images [6], which has high real-time performance
because it only focuses on geometric features in the
environment. Traditional VS relies on the assumption of a
stationary surroundings. But it doesn't hold true because it only focuses on geometric features in the environment. Traditional VS relies on the assumption of a stationary surroundings. But it doesn't hold true in real-world scenarios where moving entities, such as walker environment. Traditional VS relies on the assumption of a
stationary surroundings. But it doesn't hold true in real-world
scenarios where moving entities, such as walkers and
automobiles, are unavoidably present. Dynamic
e it doesn't hold true in real-world

enarios where moving entities, such as walkers and

tomobiles, are unavoidably present. Dynamic

vironments generate numerous incorrect data associations

J, leading to a reduction in th scenarios where moving entities, such as walkers and
automobiles, are unavoidably present. Dynamic
environments generate numerous incorrect data associations
[7], leading to a reduction in the accuracy of VS systems.
Conse automobiles, are unavoidably present. Dynamic
environments generate numerous incorrect data associations
[7], leading to a reduction in the accuracy of VS systems.
Consequently, traditional VS systems exhibit lower
robustn environments generate numerous incorrect data associations [7], leading to a reduction in the accuracy of VS systems.
Consequently, traditional VS systems exhibit lower robustness. Furthermore, traditional visual SLAM lack

Featured expenses and access to obtain finde data from the surroundings, which can give mobile robots stronger (RANSAC [8]). In additimulti-sensor fusion to localization and map building techniques have been widely environ surroundings, which can give mobile robots stronger

environmental awareness [2]. So, vision-based simultaneous

studied and applied to robot navigation [3], unmanned

driving [4] and virtual reality [5].

In practical app [7], leading to a reduction in the accuracy of VS systems.
Consequently, traditional VS systems exhibit lower
robustness. Furthermore, traditional visual SLAM lacks the
capability to comprehend the environment at a high le Consequently, traditional VS systems exhibit lower
robustness. Furthermore, traditional visual SLAM lacks the
capability to comprehend the environment at a high level and
fails to meet the demands for human-computer intera robustness. Furthermore, traditional visual SLAM lacks the capability to comprehend the environment at a high level and fails to meet the demands for human-computer interaction in the current era of intelligent technology. capability to comprehend the environment at a high level and
fails to meet the demands for human-computer interaction in
the current era of intelligent technology. To address the
limitations of traditional visual SLAM, vis fails to meet the demands for human-computer interaction in
the current era of intelligent technology. To address the
limitations of traditional visual SLAM, visual SLAM
designed for dynamic environments has emerged.
In dy the current era of intelligent technology. To address the limitations of traditional visual SLAM, visual SLAM designed for dynamic environments has emerged.

In dynamic environments, the primary objective of VS is to minim limitations of traditional visual SLAM, visual SLAM
designed for dynamic environments has emerged.
In dynamic environments, the primary objective of VS is
to minimize the influence of moving entities on the SLAM
system by designed for dynamic environments has emerged.

In dynamic environments, the primary objective of VS is

to minimize the influence of moving entities on the SLAM

system by excluding feature points associated with these

o In dynamic environments, the primary objective of VS is
to minimize the influence of moving entities on the SLAM
system by excluding feature points associated with these
objects. This challenge is addressed through two dis to minimize the influence of moving entities on the SLAM
system by excluding feature points associated with these
objects. This challenge is addressed through two distinct
approaches: geometric-based dynamic visual SLAM, e system by excluding feature points associated with these
objects. This challenge is addressed through two distinct
approaches: geometric-based dynamic visual SLAM and
deep learning-based dynamic visual SLAM, each utilizing objects. This challenge is addressed through two distinct approaches: geometric-based dynamic visual SLAM and deep learning-based dynamic visual SLAM, each utilizing specific techniques designed for this purpose. Geometryapproaches: geometric-based dynamic visual SLAM and
deep learning-based dynamic visual SLAM, each utilizing
specific techniques designed for this purpose.
Geometry-based dynamic visual SLAM employs geometric
information of deep learning-based dynamic visual SLAM, each utilizing
specific techniques designed for this purpose.
Geometry-based dynamic visual SLAM employs geometric
information of the environment to eliminate dynamic features,
and specific techniques designed for this purpose.
Geometry-based dynamic visual SLAM employs geometric
information of the environment to eliminate dynamic features,
and a prevalent approach is the maximum consistency
scheme, Geometry-based dynamic visual SLAM employs geometric
information of the environment to eliminate dynamic features,
and a prevalent approach is the maximum consistency
scheme, such as the Random Sample Consensus Algorithm
(information of the environment to eliminate dynamic features,
and a prevalent approach is the maximum consistency
scheme, such as the Random Sample Consensus Algorithm
(RANSAC [8]). In addition, many visual SALM systems us and a prevalent approach is the maximum consistency
scheme, such as the Random Sample Consensus Algorithm
(RANSAC [8]). In addition, many visual SALM systems use
multi-sensor fusion to detect dynamic targets in the
environ scheme, such as the Random Sample Consensus Algorithm (RANSAC [8]). In addition, many visual SALM systems use multi-sensor fusion to detect dynamic targets in the environment, such as ORB-SLAM3 [9]. However, these methods (RANSAC [8]). In addition, many visual SALM systems use
multi-sensor fusion to detect dynamic targets in the
environment, such as ORB-SLAM3 [9]. However, these
methods are effective only when dynamic objects are few,
and t multi-sensor fusion to detect dynamic targets in the
environment, such as ORB-SLAM3 [9]. However, these
methods are effective only when dynamic objects are few,
and they fail to capture high-level information about the
env environment, such as ORB-SLAM3 [9]. However, these
methods are effective only when dynamic objects are few,
and they fail to capture high-level information about the
environment, resulting in an insufficient understanding exthods are effective only when dynamic objects are few,
d they fail to capture high-level information about the
vironment, resulting in an insufficient understanding of the
rroundings. Dynamic visual SLAM based on deep le and they fail to capture high-level information about the environment, resulting in an insufficient understanding of the surroundings. Dynamic visual SLAM based on deep learning, also known as semantic SLAM, is capable of environment, resulting in an insufficient understanding of the surroundings. Dynamic visual SLAM based on deep learning, also known as semantic SLAM, is capable of acquiring both geometric information about unfamiliar envi surroundings. Dynamic visual SLAM based on deep learning, also known as semantic SLAM, is capable of acquiring both geometric information about unfamiliar environments and the motion states of robots. Moreover, it can dete also known as semantic SLAM, is capable of acquiring both
geometric information about unfamiliar environments and
the motion states of robots. Moreover, it can detect and
recognize targets in the surroundings, allowing for

geometric information about unfamiliar environments and
the motion states of robots. Moreover, it can detect and
recognize targets in the surroundings, allowing for the
filtering out of dynamic feature points (dfp). This c the motion states of robots. Moreover, it can detect and recognize targets in the surroundings, allowing for the filtering out of dynamic feature points (dfp). This capability enables the robot to enhance its comprehension recognize targets in the surroundings, allowing for the filtering out of dynamic feature points (dfp). This capability enables the robot to enhance its comprehension of its surroundings. Moreover it also allows robots to f

environmental awareness [2]. So, vision-based simultaneous

localization and map building techniques have been widely

studied and applied to robot navigation [3], unmanned

driving [4] and virtual reality [5].

In practic localization and map building techniques have been widely
studied and applied to robot navigation [3], unmanned
driving [4] and virtual reality [5].
In practical applications, visual SLAM needs to be
surroundings. Dy
star (KJ1704072).

Zhangfang Hu is a Professor at the Key Laboratory of Optical died and applied to robot navigation [3], unmanned

iving [4] and virtual reality [5].

In practical applications, visual SLAM needs to be

environment, resulting

surroundings. Dynam

also known as semant

Manuscript rece driving [4] and virtual reality [5].

In practical applications, visual SLAM needs to be

surroundings. Dyt

also known as ser

Manuscript received on April 4, 2024; revised on August 27, 2024.

This work was supported in In practical applications, visual SLAM needs to be

surroundings. Dyr

Manuscript received on April 4, 2024; revised on August 27, 2024.

This work was supported in part by the Youth Fund Program of the motion states

Nati Manuscript received on April 4, 2024; revised on August 27
This work was supported in part by the Youth Fund Pre
National Natural Science Foundation of China (Grant No. 61
Chongqing Basic Science and Frontier Technology Re also known as a
subsorbing the School of China (Grant No. 61703067), the
mongting Basic Science Foundation of China (Grant No. 61703067), the
mongting Basic Science and Frontier Technology Research Program of Chongqing Alt Manuscript received on April 4, 2024; revised on August 27, 2024. geometric

This work was supported in part by the Youth Fund Program of the motio

National Natural Science Foundation of China (Grant No. 61703067), the

C Finis work was supported in part +, 2021, ivisus on August 2.1, 2024.

This work was supported in part by the Youth Fund Program of the motion stational Natural Science and Frontier Technology Research Program

Correspondi Frame War was supported in part by the Total That the Science Foundation of China (Grant Chongqing Basic Science and Frontier Technology (Grant No. Cstc2017jcyjAX0212), and the Science Research Program of Chongqing Municip From the School of Optoelectronic Technology Research Program

Dengaing Basic Science and Frontier Technology Research Program

The Science and Frontier Technology Research Program

The School of Consequence and Technology

Engineering Letters
approaches only remove feature points by relying on the hypothesis, leading to poor
results of semantic segmentation or object detection, as performance in complex movin
demonstrated by methods such a **Engineering Letters**
approaches only remove feature points by relying on the hypothesis, leading to poor
results of semantic segmentation or object detection, as performance in complex moving
demonstrated by methods such **Engineering Letters**

approaches only remove feature points by relying on the hypothesis, leading to poor

results of semantic segmentation or object detection, as performance in complex move

demonstrated by methods such **Engineering Letters**
approaches only remove feature points by relying on the hypothesis, leading to poor
results of semantic segmentation or object detection, as
performance in complex movid
alemonstrated by methods such **Engineering Letters**

approaches only remove feature points by relying on the hypothesis, leading to

results of semantic segmentation or object detection, as

performance in complex

demonstrated by methods such as DS-SL **Engineering Letters**
approaches only remove feature points by relying on the hypothesis, leading to po
results of semantic segmentation or object detection, as performance in complex mo
demonstrated by methods such as DS-**Engineering Letters**

approaches only remove feature points by relying on the hypothesis, leading to poor

results of semantic segmentation or object detection, as performance in complex movid

demonstrated by methods suc **Engineering Letters**

approaches only remove feature points by relying on the hypothesis, leading to po

results of semantic segmentation or object detection, as performance in complex m

demonstrated by methods such as D **Engineering Letters**

approaches only remove feature points by relying on the hypothesis, leading to poor

results of semantic segmentation or object detection, as

performance in complex movin,

demonstrated by methods s **Engineering Letters**

approaches only remove feature points by relying on the hypothesis, leading to poor

results of semantic segmentation or object detection, as

performance in complex movin,

demonstrated by methods s approaches only remove feature points by relying on the hypothesis, leading to presults of semantic segmentation or object detection, as performance in complex n
demonstrated by methods such as DS-SLAM [10], enhance the ro approaches only remove feature points by relying on the hypothesis, leading to poor
results of semantic segmentation or object detection, as performance in complex movi
demonstrated by methods such as DS-SLAM [10], enhance approaches only remove feature points by relying on the hypothesis, leading to p
results of semantic segmentation or object detection, as performance in complex m
demonstrated by methods such as DS-SLAM [10], enhance the r results of semantic segmentation or object detection, as

performance in complex mo

demonstrated by methods such as DS-SLAM [10], enhance the robustness of vis

DynaSLAM [11], and SaD-SLAM [12]. This approach can

better demonstrated by methods such as DS-SLAM [10], enhance the robustness c
DynaSLAM [11], and SaD-SLAM [12]. This approach can
better human-machine in
lead to two main issues: misidentification of stationary
feature points as DynaSLAM [11], and SaD-SLAM [12]. This approach can
better human-machine interaction
lead to two main issues: misidentification of stationary
feature points as moving, which reduces the number of useful
object detection an lead to two main issues: misidentification of stationary

feature points as moving, which reduces the number of useful

doject detection and semantifeatures and impairs position estimation capability; and

incomplete remov feature points as moving, which reduces the number of useful object detection and semarate
tures and impairs position estimation capability; and remove dynamic regions wi
incompromises the precision and robustness of this features and impairs position estimation capability; and remove dynamic region
incomplete removal of some dynamic objects, which estimation and the de
compromises the precision and robustness of this system. In semantic in complete removal of some dynamic objects, which estimation and the development of impromises the precision and robustness of this system. In semantic information rely solely on sfit
dition, these methods use segmentation m compromises the precision and robustness of this system. In

semantic information rely solely

addition, these methods use segmentation models such as

Object detection plays a cru

SegNet [13], Mask R-CNN [14], etc. Altho addition, these methods use segmentation models such as

SegNet [13], Mask R-CNN [14], etc. Although these models

computer vision [17], aimed

have high accuracy, they are more complex in structure and

objects. It involv SegNet [13], Mask R-CNN [14], etc. Although these models

computer vision [17]

have high accuracy, they are more complex in structure and

objects. It involves

take longer to process the data, which fails to meet the cri

have high accuracy, they are more complex in structure and

the longer to process the data, which fails to meet the criteria

for real-time performance. Lastly, the conventional ORB

boxes, and determining the

(Oriented F take longer to process the data, which fails to meet the criteria images or videos, marking the for real-time performance. Lastly, the conventional ORB boxes, and determining their cat (Oriented FAST and Rotated BRIEF) fea for real-time performance. Lastly, the conventional ORB boxes, and determinin
(Oriented FAST and Rotated BRIEF) feature extraction of deep learning
method [15] employs a fixed threshold that is sensitive to learning-based (Oriented FAST and Rotated BRIEF) feature extraction of deep learning methoc
method [15] employs a fixed threshold that is sensitive to learning-based object detection
changes in environmental lighting conditions. This ach method [15] employs a fixed threshold that is sensitive to learning-based object detectomages in environmental lighting conditions. This achieving impressive result dependency can lead to challenges such as failures in fea changes in environmental lighting conditions. This achieving impressive rest
dependency can lead to challenges such as failures in feature Fast R-CNN [18] and the
point extraction and redundancy in local feature points. Re dependency can lead to challenges such as failures in feature Fast R-CNN [18] and the YOLC

point extraction and redundancy in local feature points. Researchers have incorporate

To address the aforementioned challenges in point extraction and redundancy in local feature points. Researchers have incorry To address the aforementioned challenges in SLAM into SLAM systems to systems, we have developed a semantic SLAM system entities on the perf To address the aforementioned challenges in SLAM into SLAM systems to
systems, we have developed a semantic SLAM system entities on the performance
utilizing the ORB-SLAM3 framework, which ensures both F et al. proposed De systems, we have developed a semantic SLAM system

utilizing the ORB-SLAM3 framework, which ensures both F et al. proposed Detect-SLAM

efficiency and reliability in complex dynamic environments. with deep neural network (utilizing the ORB-SLAM3 framework, which ensures both F et al. proposed Detect-SLAM
efficiency and reliability in complex dynamic environments. with deep neural network (D)
Firstly, to tackle the problem of image blurrines efficiency and reliability in complex dynamic environments. with deep neural network

Firstly, to tackle the problem of image blurriness resulting This integration enhances the

from camera shake and rapid motion of dynami Firstly, to tackle the problem of image blurriness resulting This integration enhances the from camera shake and rapid motion of dynamic objects, we tasks effectively and reliably propose the implementation of an image enh from camera shake and rapid motion of dynamic objects, we tasks effectively and relial
propose the implementation of an image enhancement environments. Detect-SL/
module. This module utilizes the DeblurGANv2 network [16] D propose the implementation of an image enhancement environments. Detect-SLAM
module. This module utilizes the DeblurGANv2 network [16] DNN-based detectors, simultar
to process blurry images, thereby improving image quality module. This module utilizes the DeblurGANv2 network [16] DNN-based detectors, sinco process blurry images, thereby improving image quality tasks: enhancing SLAM read and facilitating the subsequent modules' operation. imp to process blurry images, thereby improving image quality tasks: enhancing SLAM robustn
and facilitating the subsequent modules' operation. improving object detection per
Furthermore, to alleviate the effects of dynamic en and facilitating the subsequent modules' operation. improving object detection per Furthermore, to alleviate the effects of dynamic entities on semantic maps. In highly dyn the SLAM system, we incorporate a parallel object Furthermore, to alleviate the effects of dynamic entities on semantic maps. In highly
the SLAM system, we incorporate a parallel object detection estimated by the Detect-SL
thread within the ORB-SLAM3 framework, utilizing the SLAM system, we incorporate a parallel object detection

the production the order of the DRB-SLAM3

framework, utilizing the true trajectory. However,

epipolar constraints and enhanced YOLOv7 to eliminate the Detect-S thread within the ORB-SLAM3 framework, utilizing the true trajectory. Howev epipolar constraints and enhanced YOLOv7 to eliminate the Detect-SLAM fails to yield dfp. In the object detection network to derive some static in epipolar constraints and enhanced YOLOv7 to eliminate the Detect-SLAM fails to yield des
dfp. In the object detection threads, we employ the This is because in static scen
lightweight YOLOv7 object detection network to der dfp. In the object detection threads, we employ the This is because in static sightweight YOLOv7 object detection network to derive some static information the semantic details from images. Simultaneously, we utilize this lightweight YOLOv7 object detection network to derive
some static information
semantic details from images. Simultaneously, we utilize this
thread to identify the location of the target within the image. overall system's l semantic details from images. Simultaneously, we utilize this

thread to identify the location of the target within the image.

Meditionally, to addexise the low precision issue of the

Meditionally, to addexise the Semant thread to identify the location of the target within
Additionally, to address the low precision is:
YOLOv7 network, we integrate the SimAM
mechanism into its feature extraction process.
enhance the traditional ORB feature dditionally, to address the low precision issue of the Semantic segmentation is a m

DLOv7 network, we integrate the SimAM attention utilized within the domain of co

cchanism into its feature extraction process. Lastly, w YOLOv7 network, we integrate the SimAM attention utilized within the domain of mechanism into its feature extraction process. Lastly, we the classification of each pix enhance the traditional ORB feature extraction method mechanism into its feature extraction process. Lastly, we the classification of e
enhance the traditional ORB feature extraction method by categories. Different
daaptively adjusting the detection threshold of FAST corners enhance the traditional ORB feature extraction method by
adaptively adjusting the detection threshold of FAST corners
the images. Semantic segmentation
ange. A comparison with conventional ORB feature obtaining more precis adaptively adjusting the detection threshold of FAST corners
based on the grayscale values of different regions in the into several regions but also climage. A comparison with conventional ORB feature obtaining more precis

based on the grayscale values of different regions in the into several regions but also c

image. A comparison with conventional ORB feature obtaining more precise image

extraction, which uses a fixed threshold, demonstra image. A comparison with conventional ORB feature obtaining more precise image
extraction, which uses a fixed threshold, demonstrates that utilized in multiple domains, in
our approach produces a greater number of useful f extraction, which uses a fixed threshold, demonst
our approach produces a greater number of usef
points with a more uniform distribution. This enh
ultimately increases the accuracy of subseque
estimation tasks.
The followi It is

interest accuracy of subsequent pose It is

enced

It is enced

Interest of this article are structured in the RGI

Elow. In Section II, we present some and

or dynamic environments, summarizing segn

recture. In Se mation tasks.

The following parts of this article are structured in the RGB-D camera configuration and the RGB-D camera configuration and the comeras. Mass

mantic SLAMs for dynamic environments, summarizing segmentation

Exercise 19 Exercise 2018

hypothesis, leading to poor localization and mapping

performance in complex moving surroundings. In order to

enhance the robustness of visual SLAM systems and enable

better human-machine int **g Letters**
hypothesis, leading to poor localization and mapping
performance in complex moving surroundings. In order to
enhance the robustness of visual SLAM systems and enable
better human-machine interaction, researcher g Letters
hypothesis, leading to poor localization and mapping
performance in complex moving surroundings. In order to
enhance the robustness of visual SLAM systems and enable
better human-machine interaction, researchers **g Letters**
hypothesis, leading to poor localization and mapping
performance in complex moving surroundings. In order to
enhance the robustness of visual SLAM systems and enable
better human-machine interaction, researcher **g Letters**
hypothesis, leading to poor localization and mapping
performance in complex moving surroundings. In order to
enhance the robustness of visual SLAM systems and enable
better human-machine interaction, researcher **g Letters**
hypothesis, leading to poor localization and mapping
performance in complex moving surroundings. In order to
enhance the robustness of visual SLAM systems and enable
better human-machine interaction, researcher **g Letters**
hypothesis, leading to poor localization and mapping
performance in complex moving surroundings. In order to
enhance the robustness of visual SLAM systems and enable
better human-machine interaction, researcher **Exercise 15 Exercise 15 Exercise 15 Exercise 15 Exercise 15 Experimence in complex moving surroundings. In order to enhance the robustness of visual SLAM systems and enable better human-machine interaction, researchers ha g Letters**
hypothesis, leading to poor localization and mapping
performance in complex moving surroundings. In order to
enhance the robustness of visual SLAM systems and enable
better human-machine interaction, researcher **Letters**
 Exerters
 Exerters
 Exerters
 Exerters
 Exerter
 Exerters
 Exerter
 Exerter hypothesis, leading to poor localization and mapping
performance in complex moving surroundings. In order to
enhance the robustness of visual SLAM systems and enable
better human-machine interaction, researchers have propo hypothesis, leading to poor localization and mapping
performance in complex moving surroundings. In order to
enhance the robustness of visual SLAM systems and enable
better human-machine interaction, researchers have propo hypothesis, leading to poor localization and mapping
performance in complex moving surroundings. In order to
enhance the robustness of visual SLAM systems and enable
better human-machine interaction, researchers have propo

performance in complex moving surroundings. In order to
enhance the robustness of visual SLAM systems and enable
better human-machine interaction, researchers have proposed
Semantic SLAM. This approach utilizes deep learni enhance the robustness of visual SLAM systems and enable
better human-machine interaction, researchers have proposed
Semantic SLAM. This approach utilizes deep learning-based
object detection and semantic segmentation algo better human-machine interaction, researchers have proposed
Semantic SLAM. This approach utilizes deep learning-based
object detection and semantic segmentation algorithms to
remove dynamic regions within images. Subsequen Semantic SLAM. This approach utilizes deep learning-based
object detection and semantic segmentation algorithms to
remove dynamic regions within images. Subsequently, pose
estimation and the development of maps that incorp object detection and semantic segmentation algorithms to
remove dynamic regions within images. Subsequently, pose
estimation and the development of maps that incorporate
semantic information rely solely on sfp.
Object dete nove dynamic regions within images. Subsequently, pose
imation and the development of maps that incorporate
mantic information rely solely on sfp.
Object detection plays a crucial role in the domain of
mputer vision [17], estimation and the development of maps that incorporate
semantic information rely solely on sfp.
Object detection plays a crucial role in the domain of
computer vision [17], aimed at localizing and classifying
objects. It semantic information rely solely on sfp.

Object detection plays a crucial role in the domain of

computer vision [17], aimed at localizing and classifying

objects. It involves locating desired objects within given

image Object detection plays a crucial role in the domain of computer vision [17], aimed at localizing and classifying objects. It involves locating desired objects within given images or videos, marking their positions with bou

computer vision [17], aimed at localizing and classifying
objects. It involves locating desired objects within given
images or videos, marking their positions with bounding
boxes, and determining their categories. With the objects. It involves locating desired objects within given
images or videos, marking their positions with bounding
boxes, and determining their categories. With the progression
of deep learning methodologies, numerous deep images or videos, marking their positions with bounding
boxes, and determining their categories. With the progression
of deep learning methodologies, numerous deep
learning-based object detection algorithms have emerged,
a boxes, and determining their categories. With the progression
of deep learning methodologies, numerous deep
learning-based object detection algorithms have emerged,
achieving impressive results in this field. Examples incl of deep learning methodologies, numerous deep
learning-based object detection algorithms have emerged,
achieving impressive results in this field. Examples include
Fast R-CNN [18] and the YOLO [19] series of algorithms.
Re learning-based object detection algorithms have emerged,
achieving impressive results in this field. Examples include
Fast R-CNN [18] and the YOLO [19] series of algorithms.
Researchers have incorporated object detection a achieving impressive results in this field. Examples include
Fast R-CNN [18] and the YOLO [19] series of algorithms.
Researchers have incorporated object detection algorithms
into SLAM systems to mitigate the impact of dyn Fast R-CNN [18] and the YOLO [19] series of algorithms.

Researchers have incorporated object detection algorithms

into SLAM systems to mitigate the impact of dynamic

entities on the performance of these systems. In 2018 Researchers have incorporated object detection algorithms
into SLAM systems to mitigate the impact of dynamic
entities on the performance of these systems. In 2018, Zhong
F et al. proposed Detect-SLAM [20], that integrates into SLAM systems to mitigate the impact of dynamic
entities on the performance of these systems. In 2018, Zhong
F et al. proposed Detect-SLAM [20], that integrates SLAM
with deep neural network (DNN)-based object detector entities on the performance of these systems. In 2018, Zhong F et al. proposed Detect-SLAM [20], that integrates SLAM with deep neural network (DNN)-based object detectors. This integration enhances the ability of robots t F et al. proposed Detect-SLAM [20], that integrates SLAM
with deep neural network (DNN)-based object detectors.
This integration enhances the ability of robots to perform
tasks effectively and reliably in unfamiliar and dy with deep neural network (DNN)-based object detectors.
This integration enhances the ability of robots to perform
tasks effectively and reliably in unfamiliar and dynamic
environments. Detect-SLAM combines SLAM with
DNN-ba This integration enhances the ability of robots to perform
tasks effectively and reliably in unfamiliar and dynamic
environments. Detect-SLAM combines SLAM with
DNN-based detectors, simultaneously accomplishing three
tasks tasks effectively and reliably in unfamiliar and dynamic
environments. Detect-SLAM combines SLAM with
DNN-based detectors, simultaneously accomplishing three
tasks: enhancing SLAM robustness in dynamic environments,
improv vironments. Detect-SLAM combines SLAM with
NN-based detectors, simultaneously accomplishing three
ks: enhancing SLAM robustness in dynamic environments,
proving object detection performance, and constructing
mantic maps. I DNN-based detectors, simultaneously accomplishing three tasks: enhancing SLAM robustness in dynamic environments, improving object detection performance, and constructing semantic maps. In highly dynamic scenes, the trajec tasks: enhancing SLAM robustness in dynamic environments,
improving object detection performance, and constructing
semantic maps. In highly dynamic scenes, the trajectory
estimated by the Detect-SLAM system closely approxi improving object detection performance, and constructing
semantic maps. In highly dynamic scenes, the trajectory
estimated by the Detect-SLAM system closely approximates
the true trajectory. However, compared to ORB-SLAM2,

semantic maps. In highly dynamic scenes, the trajectory
estimated by the Detect-SLAM system closely approximates
the true trajectory. However, compared to ORB-SLAM2,
Detect-SLAM fails to yield desirable results in static s estimated by the Detect-SLAM system closely approximates
the true trajectory. However, compared to ORB-SLAM2,
Detect-SLAM fails to yield desirable results in static scenes.
This is because in static scenes, Detect-SLAM fil the true trajectory. However, compared to ORB-SLAM2,

Detect-SLAM fails to yield desirable results in static scenes.

This is because in static scenes, Detect-SLAM filters out

some static information that is beneficial fo Detect-SLAM fails to yield desirable results in static scenes.
This is because in static scenes, Detect-SLAM filters out
some static information that is beneficial for camera pose
estimation and subsequent mapping, thereby This is because in static scenes, Detect-SLAM filters out
some static information that is beneficial for camera pose
estimation and subsequent mapping, thereby affecting the
overall system's localization accuracy.
Semantic me static information that is beneficial for camera pose
timation and subsequent mapping, thereby affecting the
erall system's localization accuracy.
Semantic segmentation is a method of image segmentation
lized within the estimation and subsequent mapping, thereby affecting the overall system's localization accuracy.

Semantic segmentation is a method of image segmentation utilized within the domain of computer vision. It focuses on the cla overall system's localization accuracy.

Semantic segmentation is a method of image segmentation

utilized within the domain of computer vision. It focuses on

the classification of each pixel in an image into predefined
 Semantic segmentation is a method of image segmentation
utilized within the domain of computer vision. It focuses on
the classification of each pixel in an image into predefined
categories. Different from traditional image

utilized within the domain of computer vision. It focuses on
the classification of each pixel in an image into predefined
categories. Different from traditional image segmentation
techniques, semantic segmentation not only the classification of each pixel in an image into predefined
categories. Different from traditional image segmentation
techniques, semantic segmentation not only divides an image
into several regions but also classifies ea categories. Different from traditional image segmentation techniques, semantic segmentation not only divides an image into several regions but also classifies each pixel, thereby obtaining more precise image segmentation r techniques, semantic segmentation not only divides an image
into several regions but also classifies each pixel, thereby
obtaining more precise image segmentation results. It is
utilized in multiple domains, including auto into several regions but also classifies each pixel, thereby
obtaining more precise image segmentation results. It is
utilized in multiple domains, including autonomous driving,
medical image analysis, and robotic vision.
 obtaining more precise image segmentation results. It is
utilized in multiple domains, including autonomous driving,
medical image analysis, and robotic vision.
In 2018, Bescos et al. introduced the DynaSLAM system.
It is utilized in multiple domains, including autonomous driving,
medical image analysis, and robotic vision.
In 2018, Bescos et al. introduced the DynaSLAM system.
It is founded on ORB-SLAM2 framework. This system
encompasses i medical image analysis, and robotic vision.

In 2018, Bescos et al. introduced the DynaSLAM system.

It is founded on ORB-SLAM2 framework. This system

encompasses interfaces designed for monocular, stereo, and

RGB-D came In 2018, Bescos et al. introduced the DynaSLAM system.
It is founded on ORB-SLAM2 framework. This system
encompasses interfaces designed for monocular, stereo, and
RGB-D camera configurations. When we utilize monocular
and It is founded on ORB-SLAM2 framework. This system
encompasses interfaces designed for monocular, stereo, and
RGB-D camera configurations. When we utilize monocular
and stereo cameras, Mask R-CNN is employed to perform
segm requirements.

Engineering Letters
The same year, C. Yu et al. introduced DS-SLAM, a semantic information pertaining
thod derived from ORB-SLAM2. Its main innovation lies including labels and positions.
the addition of a independent re **Engineering Letters**
The same year, C. Yu et al. introduced DS-SLAM, a semantic information pertain
method derived from ORB-SLAM2. Its main innovation lies including labels and positions
in the addition of a independent r **Engineering Letters**

The same year, C. Yu et al. introduced DS-SLAM, a

method derived from ORB-SLAM2. Its main innovation lies

in the addition of a independent real-time semantic made to the traditional OF

segmentatio **Engineering Letters**
The same year, C. Yu et al. introduced DS-SLAM, a
mematic informatic
method derived from ORB-SLAM2. Its main innovation lies
including labels and
in the addition of a independent real-time semantic ma **Engineering Letters**
The same year, C. Yu et al. introduced DS-SLAM, a semantic information pertaini
method derived from ORB-SLAM2. Its main innovation lies including labels and positions
in the addition of a independent **Engineering Letters**

The same year, C. Yu et al. introduced DS-SLAM, a

method derived from ORB-SLAM2. Its main innovation lies

in the addition of a independent real-time semantic made to the traditional ORB f

segmenta **Engineering Letters**

The same year, C. Yu et al. introduced DS-SLAM, a semantic information pertaini

method derived from ORB-SLAM2. Its main innovation lies including labels and positions

in the addition of a independe **Engineering L**

The same year, C. Yu et al. introduced DS-SLAM, a

method derived from ORB-SLAM2. Its main innovation lies

in the addition of a independent real-time semantic made

segmentation module within the framewor **Engineering Letters**

The same year, C. Yu et al. introduced DS-SLAM, a

semantic information pertaini

thod derived from ORB-SLAM2. Its main innovation lies

including labels and positions

the addition of a independent **Engineering Letters**

The same year, C. Yu et al. introduced DS-SLAM, a

method derived from ORB-SLAM2. Its main innovation lies

including labels and

in the addition of a independent real-time semantic made to the tradi The same year, C. Yu et al. introduced DS-SLAM, a semantic information pertamethod derived from ORB-SLAM2. Its main innovation lies including labels and position in the addition of a independent real-time semantic made to The same year, C. Yu et al. introduced DS-SLAM, a semantic information p
method derived from ORB-SLAM2. Its main innovation lies including labels and poin
in the addition of a independent real-time semantic made to the tr

The same year, C. Yu et al. introduced DS-SLAM, a semantic information pertain

method derived from ORB-SLAM2. Its main innovation lies

in the addition of a independent real-time semantic made to the traditional ORB

seg method derived from ORB-SLAM2. Its main innovation lies

including labels and positions.

in the addition of a independent real-time semantic made to the traditional ORB feat

segmentation module within the framework of O in the addition of a independent real-time semantic made to the traditional ORB feat
segmentation module within the framework of ORB-SLAM2. by employing adaptive thre
environment and creating a dense semantic octree map i segmentation module within the framework of ORB-SLAM2. by employing adaptive thres

This thread is capable of removing dynamic objects from the robustness of feature point extra

econtrimument and creating a dense semanti This thread is capable of removing dynamic objects from the robustness of feature point extra

environment and creating a dense semantic octree map information obtained from the

containing environmental semantic informati environment and creating a dense semantic octree map

containing environmental semantic information, enabling the

conbined with epipolar c

crobot to perform higher-level tasks.

that are linked to dynamic

orbot to perfo containing environmental semantic information, enabling the

robot to perform higher-level tasks.

The above-mentioned methods have improved the we will exclusively emplo

property of SLAM systems to some extent, but mecha The above-mentioned methods have improved the we will exclusively employ state

property of SLAM systems to some extent, but mechanically

ure will exclusively employ state

premoving dynamic objects can result in the loss The above-mentioned methods have improved the we will exclusively employ statt
property of SLAM systems to some extent, but mechanically
removing dynamic objects can result in the loss of many
cabon, Y et al. proposed the property of SLAM systems to some extent, but mechanically

removing dynamic objects can result in the loss of many

usable feature points in the system. To tackle this problem,

Cabon, Y et al. proposed the SLAMANTIC syste removing dynamic objects can result in the loss of many

usable feature points in the system. To tackle this problem,

cabon, Y et al. proposed the SLAMANTIC system [21],

unito does not require motion detection. Instead, usable feature points in the system. To tackle this prob
Cabon, Y et al. proposed the SLAMANTIC system [
which does not require motion detection. Instead
introduces confidence by assigning different probabilitie
motion to bon, Y et al. proposed the SLAM aNTIC system [21],

ich does not require motion detection. Instead, it

roduces confidence by assigning different probabilities of

to coach object to ascertain whether the object is in a
 which does not require motion detection. Instead, it
introduces confidence by assigning different probabilities of
motion to each object to ascentian whether the object is in a
ability to distinguish between objects that introduces confidence by assigning different probabilities of

motion to each object to ascertain whether the object is in a

state of motion. As a result, this methodology possesses the

ast dynamic, while they are, in re motion to each object to ascertain whether the object is in a

state of motion. As a result, this methodology possesses the

ability to distinguish between objects that might be regarded

ability to distinguish between obj state of motion. As a result, this methodology possesses the
ability to distinguish between objects that might be regarded
as dynamic, while they are, in reality, stationary. In addition,
This system integrates semantic la

Network ability to distinguish between objects that might be regarded

as dynamic, while they are, in reality, stationary. In addition,

This system integrates semantic label distribution with the

consistency of map point as dynamic, while they are, in reality, stationary. In addition,

This system integrates semantic label distribution with the

consistency of map point observations to vealuate the

reliability of each 3D measurement point This system integrates semantic label distribution with
consistency of map point observations to evaluate
reliability of each 3D measurement point. Subsequently,
information is utilized for pose estimation and subsequ
map Unifized for pose estimation and subsequent

in steps.

semantic SLAM outperforms traditional

in overall performance. However, some

solely on improving accuracy while

In the

I-time capabilities, while others exhibit go This section offers a comprehensive analysis of the system

understand thos cours solely on improving accuracy while

understand SLAM in overall performance. However, some

erlooking real-time epapolities, while others exh In summary, semantic SLAM outperforms traditional

in overall performance. However, some

methods focus solely on improving accuracy while

overlooking real-time capabilities, while others exhibit good

real-time performa VISUAL SLAM in overall performance. However, some

methods focus solely on improving accuracy while

overlooking real-time epapelitities, while other exhibit good

real-time performance but lower accuracy and robustness.

methods focus solely on improving accuracy while
overlooking real-time epablities, while others exhibit good
real-time performance but lower accuracy and robustness.
Therefore, enhancing the accuracy of SLAM systems while
 overlooking real-time capabilities, while others exhibit good

real-time performance but lower accuracy and robustness.

Therefore, enhancing the accuracy of SLAM systems while

maintaining a certain level of real-time pro real-time performance but lower accuracy and robustness.

Therefore, enhancing the accuracy of SLAM systems while

maintaining a certain level of real-time property constitutes a

significant area of research.

III. SYSTEM Therefore, enhancing the accuracy of SLAM systems while

maintaining a certain level of real-time property constitutes a

in environments characterize

in environments characterize

in environments characterize

in enviro maintaining a certain level of real-time property constitutes a

in environments characte

in environments characte

in environments characte

in environments characte

inforculations are improvements of the system propose significant area of research.

III. SYSTEM INTRODUCTION

III. SYST III. SYSTEM INTRODUCTION

introduces an image

This section offers a comprehensive analysis of the system

put forward in the present study. First, we present the

put forward in the present study. First, we present the

i This section offers a comprehensive analysis of the system images obtained from the camer
put forward in the present study. First, we present the The DeblurGANv2 network
improvements of the system proposed within this pap This section offers a comprehensive analysis of the system
put forward in the present study. First, we present the
improvements of the system proposed within this paper on
DeblurGAI
the ORB-SLAM3 framework, including the *A. Framework of our system*
 A. Framework, including the incorporation of
 A. Framework, including the incorporation of
 A. Framework, including the incorporation of
 A. Examework of implementing the image enhancem EXECUTE: A strained in Fig. 1, ORB-SLAM3 is an open-source and foother and the substrated in Fig. 1, ORB-SLAM3 is an open-source of the proposed in the substrated in Fig. 1, ORB-SLAM3 is an open-source pre-transition of s and image enhancement module, the introduction of adaptive

interded backbone network, resulting

thresholding, and the enhanced YOLOv7 network. Then, the

interded variables of implementing the image enhancement module

a mapping thread, and a loop closing thread responsible for
methods of implementing the enhanced YOLOv7 network. Then, the
discompared to DeblurGAN. I
methods of implementing the image enhancement module
of performance, meet

methols of implementing the image enhancement module

methods of implementing the image enhancement module

on the traditional

on the traditional

ORB feature extraction are explained in detail. Lastly, the

DeblurGANv2 n independent and using adaptive thresholding to improve the traditional

or a discriminator. The network and

ORB feature extraction are explained in detail. Lastly, the

ORB feature extraction are explained in detail. Last ORB feature extraction are explained in detail. Lastly, the systems. The interwork actionues
paper elaborates on the enhancement of the YOLOv7 a discriminator. The generator entwork and its integration with polar constrai paper elaborates on the enhancement of the YOLOv7

paper elaborates on the enhancement of the YOLOv7

adiscriminator. The generator enterwork and its integration with polar constraints to propose a

Metwork (FPN) structur Framework and its integration with polar constraints to propose a

method for filtering dynamic feature points.

The branches and fuses the quality of produced in Fig. 1, ORB-SLAM3 is an open-source

Method is integration Framework of our system

A. Framework of our system

A. Framework of our system

As illustrated in Fig. 1, ORB-SLAM3 is an open-source

The quality of produced im

relativistic discriminator

NS system characterized by a t A. Framework of our system

As illustrated in Fig. 1, ORB-SLAM3 is an open-source

the quality of produced ima_n

relativistic discriminator

NS system characterized by a tracking thread, a local

mapping thread, and a lo *A. Framework of our system*

relativistic discriminator

As illustrated in Fig. 1, ORB-SLAM3 is an open-source

fluendion is implemented. A

VS system characterized by a tracking thread, a local

mapping thread, and a lo

g Letters

semantic information pertaining to entities in images,

including labels and positions. Improvements have been

made to the traditional ORB feature point extraction method

by employing adaptive thresholding, en g Letters

semantic information pertaining to entities in images,

including labels and positions. Improvements have been

made to the traditional ORB feature point extraction method

by employing adaptive thresholding, en g Letters
semantic information pertaining to entities in images,
including labels and positions. Improvements have been
made to the traditional ORB feature point extraction method
by employing adaptive thresholding, enhanc **g Letters**
semantic information pertaining to entities in images,
including labels and positions. Improvements have been
made to the traditional ORB feature point extraction method
by employing adaptive thresholding, enha g Letters
semantic information pertaining to entities in images,
including labels and positions. Improvements have been
made to the traditional ORB feature point extraction method
by employing adaptive thresholding, enhanc g Letters
semantic information pertaining to entities in images,
including labels and positions. Improvements have been
made to the traditional ORB feature point extraction method
by employing adaptive thresholding, enhanc **g Letters**

semantic information pertaining to entities in images,

including labels and positions. Improvements have been

made to the traditional ORB feature point extraction method

by employing adaptive thresholding, **Example 18 Example 18 Concerned to the subsequent tasks,**
 Example 18 Concerned to the traditional ORB feature point extraction method

by employing adaptive thresholding, enhancing the

robustness of feature point extr **g Letters**

semantic information pertaining to entities in images,

including labels and positions. Improvements have been

made to the traditional ORB feature point extraction method

by employing adaptive thresholding,

Faster Lawrence Cause of SLAM and the scene can also cause blurriness.

Fast-moving objects in the scene can also cause blurriness.

The scene can also cause blurriness.

Many previous SLAM methods have overlooked these is Full BA

Full BA

Fig.1. Framework of ORB-SLAM3

Fig.1. Framework of ORB-SLAM3

B. *Image Enhancement Module*

In the course of a mobile robot's movement, camera shake

inevitably occurs, leading to blurry images. Additio Full BA

Fig.1. Framework of ORB-SLAM3

Fig.1. Framework of ORB-SLAM3

B. Image Enhancement Module

In the course of a mobile robot's movement, camera shake

inevitably occurs, leading to blurry images. Additionally,

fast Full BA

Fig.1. Framework of ORB-SLAM3

Fig.1. Framework of ORB-SLAM3

B. Image Enhancement Module

In the course of a mobile robot's movement, camera shake

inevitably occurs, leading to blurry images. Additionally,

fast Full BA

Fig.1. Framework of ORB-SLAM3

Fig.1. Framework of ORB-SLAM3

B. Image Enhancement Module

In the course of a mobile robot's movement, camera shake

inevitably occurs, leading to blurry images. Additionally,

fast Fig.1. Framework of ORB-SLAM3.
 Example 18. Image Enhancement Module

In the course of a mobile robot's movement, camera shake

inevitably occurs, leading to blurry images. Additionally,

fast-moving objects in the scene Fig.1. Framework of ORB-SLAM3
 B. Image Enhancement Module

In the course of a mobile robot's movement, camera shake

inevitably occurs, leading to blurry images. Additionally,

fast-moving objects in the scene can also network. 3. *Image Enhancement Module*
In the course of a mobile robot's movement, camera shake
evitably occurs, leading to blurry images. Additionally,
st-moving objects in the scene can also cause blurriness.
any previous SLAM me *B. Image Enhancement Module*
In the course of a mobile robot's movement, camera shake
inevitably occurs, leading to blurry images. Additionally,
fast-moving objects in the scene can also cause blurriness.
Many previous S In the course of a mobile robot's movement, camera shake
inevitably occurs, leading to blurry images. Additionally,
fast-moving objects in the scene can also cause blurriness.
Many previous SLAM methods have overlooked the inevitably occurs, leading to blurry images. Additionally,
fast-moving objects in the scene can also cause blurriness.
Many previous SLAM methods have overlooked these issues,
resulting in poor robustness and accuracy of S

fast-moving objects in the scene can also cause blurriness.
Many previous SLAM methods have overlooked these issues,
resulting in poor robustness and accuracy of SLAM systems
in environments characterized by high dynamics. Many previous SLAM methods have overlooked these issues,
resulting in poor robustness and accuracy of SLAM systems
in environments characterized by high dynamics. This paper
introduces an image enhancement module into the
 resulting in poor robustness and accuracy of SLAM systems
in environments characterized by high dynamics. This paper
introduces an image enhancement module into the
framework of ORB-SLAM3. This module preprocesses
images o in environments characterized by high dynamics. This paper
introduces an image enhancement module into the
framework of ORB-SLAM3. This module preprocesses
images obtained from the camera using the DeblurGANv2
network.
The introduces an image enhancement module into the
framework of ORB-SLAM3. This module preprocesses
images obtained from the camera using the DeblurGANv2
network.
The DeblurGANv2 network is an improvement over
DeblurGANv2 uti framework of ORB-SLAM3. This module preprocesses
images obtained from the camera using the DeblurGANv2
network.
The DeblurGANv2 network is an improvement over
DeblurGANv2 utilizes the lightweight MobileNet [23] as its
back images obtained from the camera using the DeblurGANv2
network.
The DeblurGANv2 network is an improvement over
DeblurGAN [22], achieving better results. Furthermore,
DeblurGANv2 utilizes the lightweight MobileNet [23] as it network.
The DeblurGANv2 network is an improvement over
DeblurGAN [22], achieving better results. Furthermore,
DeblurGANv2 utilizes the lightweight MobileNet [23] as its
backbone network, resulting in a 20x speed improveme The DeblurGANv2 network is an improvement over
DeblurGAN [22], achieving better results. Furthermore,
DeblurGANv2 utilizes the lightweight MobileNet [23] as its
backbone network, resulting in a 20x speed improvement
compar DeblurGAN [22], achieving better results. Furthermore,
DeblurGANv2 utilizes the lightweight MobileNet [23] as its
backbone network, resulting in a 20x speed improvement
compared to DeblurGAN. It exhibits good real-time
per DeblurGANv2 utilizes the lightweight MobileNet [23] as its backbone network, resulting in a 20x speed improvement compared to DeblurGAN. It exhibits good real-time performance, meeting the real-time requirements of SLAM sy backbone network, resulting in a 20x speed improvement
compared to DeblurGAN. It exhibits good real-time
performance, meeting the real-time requirements of SLAM
systems. The network architecture is illustrated in Fig. 3. T performance, meeting the real-time requirements of SLAM
systems. The network architecture is illustrated in Fig. 3. The
DeblurGANv2 network consists primarily of a generator and
a discriminator. The generator employs the F systems. The network architecture is illustrated in Fig. 3. The
DeblurGANv2 network consists primarily of a generator and
a discriminator. The generator employs the Feature Pyramid
Network (FPN) structure, which gathers fe DeblurGANv2 network consists primarily of a generator and
a discriminator. The generator employs the Feature Pyramid
Network (FPN) structure, which gathers feature outputs from
five branches and fuses them through upsampli a discriminator. The generator employs the Feature Pyramid
Network (FPN) structure, which gathers feature outputs from
five branches and fuses them through upsampling to improve
the quality of produced images. In the discr

Network (FPN) structure, which gathers feature outputs from
five branches and fuses them through upsampling to improve
the quality of produced images. In the discriminator part, a
relativistic discriminator utilizing a lea five branches and fuses them through upsampling to improve
the quality of produced images. In the discriminator part, a
relativistic discriminator utilizing a least-squares loss
function is implemented. Additionally, it in the quality of produced images. In the discriminator part, a relativistic discriminator utilizing a least-squares loss function is implemented. Additionally, it integrates global and local scale discriminator losses, ensur

Engineering Letters
blurring induced by camera shake and rapid object TUM dataset. The outcomes,
movements. Subsequently, the deblurred frames are fed into that the image enhancemen
feature extraction and object detectio **Engineering Letters**
blurring induced by camera shake and rapid object TUM dataset. The outcomes, il
movements. Subsequently, the deblurred frames are fed into that the image enhancement if
feature extraction and object d **Engineering Letters**
blurring induced by camera shake and rapid object TUM dataset. The outcomes
movements. Subsequently, the deblurred frames are fed into that the image enhancemer
feature extraction and object detectio Engineering Letters

blurring induced by camera shake and rapid object TUM dataset. The outcomes, ill

movements. Subsequently, the deblurred frames are fed into that the image enhancement m

feature extraction and object

TUM dataset. The outcomes, illustrated in Fig.4, substantiate
that the image enhancement module utilized in this study
significantly ameliorates issues of image blurring attributed
to camera shake and object motion. **TUM dataset.** The outcomes, illustrated in Fig.4, substantiate that the image enhancement module utilized in this study significantly ameliorates issues of image blurring attributed to camera shake and object motion. **Solution:**
TUM dataset. The outcomes, illustrated in Fig.4, substantiate
that the image enhancement module utilized in this study
significantly ameliorates issues of image blurring attributed
to camera shake and object m **TUM dataset.** The outcomes, illustrated in Fig.4, substantiate
that the image enhancement module utilized in this study
significantly ameliorates issues of image blurring attributed
to camera shake and object motion.

Engineering Letters
C. ORB feature extraction based on adaptive thresholding First, establish a thr
In the ORB-SLAM3 system, ORB (Oriented FAST and grayscale values in the
otated BRIEF) feature points are utilized, whi **Engineering Letters**

C. *ORB feature extraction based on adaptive thresholding*

In the ORB-SLAM3 system, ORB (Oriented FAST and

tated BRIEF) feature points are utilized, which consist of

iented FAST corners and BRIEF **Engineering Letters**

C. *ORB feature extraction based on adaptive thresholding*

In the ORB-SLAM3 system, ORB (Oriented FAST and

Rotated BRIEF) feature points are utilized, which consist of

oriented FAST comers are ut **Engineering Letters**

C. *ORB feature extraction based on adaptive thresholding*

In the ORB-SLAM3 system, ORB (Oriented FAST and

Rotated BRIEF) feature points are utilized, which consist of

Oriented FAST corners and B **Engineering Letters**

C. *ORB feature extraction based on adaptive thresholding* First, establish a threshold v

In the ORB-SLAM3 system, ORB (Oriented FAST and anal prayscale values in the range [

Rotated BRIEF) featur **Engineering Letters**

C. *ORB feature extraction based on adaptive thresholding* First, establish a threshold In the ORB-SLAM3 system, ORB (Oriented FAST and and [t+1, L-1]. Let *S_l* and *S*

Rotated BRIEF) feature poi **Engineering Letters**

C. *ORB feature extraction based on adaptive thresholding*

In the ORB-SLAM3 system, ORB (Oriented FAST and grayscale values in the range [0, L

Rotated BRIEF) feature points are utilized, which con **Engineering Letters**
 C. ORB feature extraction based on adaptive thresholding

In the ORB-SLAM3 system, ORB (Oriented FAST and grayscale values in the range [

In the ORB-SLAM3 system, ORB (Oriented FAST and and [*t*+ **Engineering Letters**
 C. ORB feature extraction based on adaptive thresholding First, establish a threshol

In the ORB-SLAM3 system, ORB (Oriented FAST and and [*t*+*I*, *L*-1]. Let *S*_{*i*} and

Rotated BRIEF) feature *C. ORB feature extraction based on adaptive thresholding* First, establish

In the ORB-SLAM3 system, ORB (Oriented FAST and and $[t+1, L-1]$. I

Rotated BRIEF) feature points are utilized, which consist of probability dist *C. ORB feature extraction based on adaptive thresholding* First, establish a threshold value In the ORB-SLAM3 system, ORB (Oriented FAST and and $[t+l, L-l]$. Let S_l and S_2 re Oriented FAST corners and BRIEF descriptors *C. ORB feature extraction based on adaptive thresholding* First, establish a threshold of In the ORB-SLAM3 system, ORB (Oriented FAST and $[f+l, L-l]$. Let S_l and S_l oriented FAST corners are utilized, which consist of p C. *ORB feature extraction based on adaptive thresholding*

In the ORB-SLAM3 system, ORB (Oriented FAST and

Rotated BRIEF) feature points are utilized, which consist of

oriented FAST corners and BRIEF descriptors. FAST
 In the ORB-SLAM3 system, ORB (Oriented FAST and and $[t+1, L-1]$. Let S_i and S

Rotated BRIEF) feature points are utilized, which consist of probability distributions. Concernes primarily detect areas with significant loc Rotated BRIEF) feature points are utilized, which consist of

Oriented FAST corners and BRIEF descriptors. FAST

intensity destributions

corners primarily detect areas with significant local pixel

intensity changes, as Oriented FAST corners and BRIEF descriptors. FAST

corners primarily detect areas with significant local pixel

intensity changes, as illustrated in Fig. 5. The feature point

extraction process, as described in [15], inv corners primarily detect areas with significant local pixel
intensity changes, as illustrated in Fig. 5. The feature point
extraction process, as described in [15], involves selecting a
pixel P in the image with pixel val intensity changes, as illustrated in Fig. 5. The feature point

extraction process, as described in [15], involves selecting a

pixel P in the image with pixel value I_p . The threshold value

T is set (e.g., 20% of I_p) extraction process, as described in [15], involves selecting a

pixel P in the image with pixel value I_p . The threshold value

T is set (e.g., 20% of I_p). Then, 16 pixels are selected around

P, utilizing a radius of pixel P in the image with pixel value I_p . The threshold value

T is set (e.g., 20% of I_p). Then, 16 pixels are selected around

P, utilizing a radius of 3 pixels. If there are N consecutive

points on the circular pat T is set (e.g., 20% of I_p). Then, 16 pixels are selected around

P, utilizing a radius of 3 pixels. If there are N consecutive

prece P_i presents the probably

pixels on the circular path with values exceeding ($I_p + T$ *P*, utilizing a radius of 3 pixels. If there are *N* consecutive occurrence. Then, let $P_t = P_0 +$
pixels on the circular path with values exceeding $(I_p + T)$ or and S_2 can be articulated as:
fill is customary to set the pixels on the circular path with values exceeding $(I_p + T)$ or and S_2 can be articulated a
falling blow $(I_p - T)$, then P can be classified as a feature point.
It is customary to set the value of N to 12, a configuration falling blow (I_p -T), then P can be classified as a feature point.

It is customary to set the value of N to 12, a configuration

It is customary to set the value of N to 12, a configuration

are 9 and 11, referred to as It is customary to set the value of N to 12, a configuration $H(S_1)$ =
referred to as FAST-12. Other commonly used values for N
are 9 and 11, referred to as FAST-9 and FAST-11,
respectively). Since FAST corners use a fixe referred to as FAST-12. Other commonly used values for N

are 9 and 11, referred to as FAST-9 and FAST-11,

respectively). Since FAST corners use a fixed threshold

during extraction, only the points with the most signifi are 9 and 11, referred to as FAST-9 and FAST-11,
respectively). Since FAST corners use a fixed threshold
during extraction, only the points with the most significant
This results in the image are selected as corners. Cons pectively). Since FAST corners use a fixed threshold
 H(S_2) = ring extraction, only the points with the most significant

in sysscale differences in the image are selected as corners.

Consequently, the o

ints withi during extraction, only the points with the most significant

grayscale differences in the image are selected as corners.

This results in the imability to extract other useful feature

points within the image. Furthermor grayscale differences in the image are selected as corners. Consequently, the over
This results in the imability to extract other useful feature expressed as the cumulat
points within the image. Furthermore, during subseq This results in the inability to extract other useful feature

expressed as the cumulat

points within the image. Furthermore, during subsequent

denoted as:

IF(S) =

preservirong the maximum Harris response value result

points within the image. Furthermore, during subsequent
feature extraction using quadtree partitioning, the method of
preserving the maximum Harris response value results in all
and the method of
comers being concentrated feature extraction using quadtree partitioning, the method of
preserving the maximum Harris response value results in all
corners being concentrated in regions with richer textures. the grayscal corners being concentrated preserving the maximum Harris response value results in all

Recordent and grayscale histogram, ca

This leads to redundant local feature points. If these feature

the two classes. Then, the

points gather on dynamic enti corners being concentrated in regions with richer textures. the grayscale histogram, This leads to redundant local feature points. If these feature the two classes. Then, the points may result in fewer available feature p This leads to redundant local feature points. If these feature

the two classes. Then, the grays

points gather on dynamic entities, removing dynamic feature

the maximum value is denoted as

consecting the solication fai points gather on dynamic entities, removing dynamic feature
points may result in fewer available feature points. In severe
corresponding to the minimu
cases, this can cause localization failure in the SLAM system. Therefo points may result in fewer available feature points. In severce corresponding to the minimum
cases, this can cause localization failure in the SLAM system. Therefore, the global optimal the
After the above analysis, selec cases, this can cause localization failure in the SLAM system. Therefore, the global optical of the above analysis, selecting ORB features. In order to the robustness of feature point extraction in complex

embance the ro After the above analysis, selecting the appropriate as:

threshold is essential for extracting ORB features. In order to

enhance the robustness of feature point extraction in complex

environments for the SLAM system, we threshold is essential for extracting ORB features. In order to $T_g = h$

enhance the robustness of feature point extraction in complex

environments for the SLAM system, we adopt an adaptive

thresholds selection method th enhance the robustness of feature point extraction in complex
environments for the SLAM system, we adopt an adaptive
thresholds relaction method that is grounded in KSW entropy
threshold Tg can be adaptiv
urality value environments for the SLAM system, we adopt an adaptive
thresholds selection method that is grounded in KSW entropy
threshold T_g can be adaptive
grayscale distribution of the image. The KSW entropy
distribution of gravit thresholds selection method that is grounded in KSW entropy
value [24], determining the global threshold T_g based on the distribution of grayscale values grayscale values. The KSW entropy all regions of the image are
en value [24], determining the global threshold T_g based on the distribution of grayscale values is
grayscale distribution of the image. The KSW entropy all regions of the image are
method refers to calculating the entropy grayscale distribution of the image. The KSW entropy all regions of the image are
method refers to calculating the entropy of the grayscale conditions. When local regions
histogram of an image and utilizing conditional pr method refers to calculating the entropy of the grayscale

bistogram of an image and utilizing conditional probability to

doscarbistication of grayscale values for objects and

backgrounds in the image, thereby defining histogram of an image and utilizing conditional probability to

describe the distribution of grayscale values for objects and

inadequate, leading to a decre

backgrounds in the image, thereby defining the entropy for

fe describe the distribution of grayscale values for objects and
backgrounds in the image, thereby defining the entropy for
the constrained both the objects and the backgrounds. The method employed
in this paper approximates backgrounds in the image, thereby defining the entropy for
both the objects and the backgrounds. The method employed
in this paper approximates the probability of each grayscale
in this paper are proposition of grayscale both the objects and the backgrounds. The method employed
in this paper approximates the probability of each grayscale
value to represent the likelihood distribution of grayscale
values and extracts global grayscale inform

Example 18 Example 10
First, establish a threshold value t to divide the image with
ayscale values in the range $[0, L-1]$ into two categories: $[0, t]$
d $[t+1, L-1]$. Let S_1 and S_2 represent the respective pixel
bob **g Letters**
First, establish a threshold value t to divide the image with grayscale values in the range $[0, L-1]$ into two categories: $[0, t]$ and $[t+1, L-1]$. Let S_1 and S_2 represent the respective pixel probability **EXECUTE:**
First, establish a threshold value t to divide the image with grayscale values in the range [0, L-1] into two categories: [0, t] and [t+1, L-1]. Let S_l and S_2 represent the respective pixel probability dis **g Letters**

First, establish a threshold value t to divide the image with

grayscale values in the range [0, L-1] into two categories: [0, t]

and [t+1, L-1]. Let S_1 and S_2 represent the respective pixel

probabili **EXECUTE:**

First, establish a threshold value t to divide the image with

grayscale values in the range [0, L-1] into two categories: [0, t]

and [t+1, L-1]. Let S_l and S_2 represent the respective pixel

probability **1.** threshold value t to divide the image with

the range $[0, L-I]$ into two categories: $[0, t]$

t S_I and S_2 represent the respective pixel

utions. Consequently, S1 and S2 can be

ollowing formulas:
 $S_1 = \{P_0, P_1$ *Sh* a threshold value t to divide the image with
 Ss in the range [0, L-1] into two categories: [0, t]
 L Let S_l and S_2 represent the respective pixel

tributions. Consequently, S1 and S2 can be
 *S*₁ = { $P_0,$ **Letters**

First, establish a threshold value t to divide the image with

ayscale values in the range [0, L-1] into two categories: [0, t]
 d [t+1, L-1]. Let S_1 and S_2 represent the respective pixel

bobability di First, establish a threshold value t to divide the image with
grayscale values in the range [0, L-I] into two categories: [0, t]
and [t+1, L-I]. Let S_t and S_2 represent the respective pixel
probability distributions. First, establish a threshold value t to divide the image with
grayscale values in the range [0, L-1] into two categories: [0, t]
and [t+1, L-1]. Let S_t and S_2 represent the respective pixel
probability distributions. threshold value t to divide the image with

the range [0, L-1] into two categories: [0, t]

S₁ and S₂ represent the respective pixel

oins. Consequently, S1 and S2 can be

lowing formulas:
 $\left[P_0, P_1, P_2, \ldots P_t \right]$ (*i* to divide the image with
 i] into two categories: [0, t]

esent the respective pixel

ently, S1 and S2 can be

as:
 $\ldots P_t$ (1)
 $\ldots P_{L-1}$ (2)

(2)

ty of each grayscale level
 $+\cdots+P_t$, the entropy of S₁
 $\frac{P$ a threshold value t to divide the image with

the range [0, L-1] into two categories: [0, t]

et S_I and S₂ represent the respective pixel

butions. Consequently, S1 and S2 can be

following formulas:
 $S_1 = \{P_0, P_1, P$ alue t to divide the image with
 P, *L*-*I*] into two categories: [0, *t*]

represent the respective pixel

sequently, S1 and S2 can be

mulas:
 $P_1, P_2, \ldots P_l$ } (1)
 $P_2, \ldots P_{l-1}$ } (2)

ability of each grayscale leve old value t to divide the image with

gge [0, L-1] into two categories: [0, t]

d S₂ represent the respective pixel

Consequently, S1 and S2 can be

g formulas:
 $P_0, P_1, P_2, \dots P_t$ } (1)
 $P_{t+2}, P_{t+3}, \dots P_{L-1}$ } (2)

pro 1 a threshold value t to divide the image with

in the range [*0*, *L*-*I*] into two categories: [*0*, *t*]

Let *S_i* and *S₂* represent the respective pixel

ibutions. Consequently, S1 and S2 can be
 f ollowing for ralue t to divide the image with
 $0, L-l$] into two categories: [$0, t$]

represent the respective pixel

sequently, S1 and S2 can be

rmulas:
 $2, P_1, P_2, \ldots P_t$ }
(1)
 $2, P_{t+3}, \ldots P_{L-1}$ }
(2)

ability of each grayscale lev *i* that a threshold value t to divide the image with
 is in the range [0, L-1] into two categories: [0, t]
 J. Let *S₁* and *S₂* represent the respective pixel

stributions. Consequently, S1 and S2 can be

the fo *P* at to divide the image with
 P j into two categories: [0, *t*]

resent the respective pixel

luently, S1 and S2 can be

las:
 $\begin{cases}\n\cdot, \dots P_t\end{cases}$ (1)
 $\begin{cases}\n\cdot, \dots P_{t-1}\end{cases}$ (2)

ity of each grayscale level
 $P_1 +$ reshold value t to divide the image with

r ange [0, L-1] into two categories: [0, t]
 t and S₂ represent the respective pixel

ms. Consequently, S1 and S2 can be

wing formulas:

= { $P_0, P_1, P_2, ..., P_t$ } (1)

When proba bld value t to divide the image with

ge [0, L-1] into two categories: [0, t]
 S_2 represent the respective pixel

Consequently, S1 and S2 can be

g formulas:
 $P_0, P_1, P_2, \dots P_r$ }
(1)
 $P_{t+2}, P_{t+3}, \dots P_{L-1}$ }
(2)

proba

$$
S_1 = \{P_0, P_1, P_2, \dots P_t\} \tag{1}
$$

$$
S_2 = \{P_{t+1}, P_{t+2}, P_{t+3}, \dots P_{L-1}\}
$$
 (2)

 $S_1 = \{P_{t+1}, P_{t+2}, P_{t+3}, \dots P_{L-1}\}$ (1)
 $S_2 = \{P_{t+1}, P_{t+2}, P_{t+3}, \dots P_{L-1}\}$ (2)

Where P_i presents the probability of each grayscale level

currence. Then, let $P_t = P_0 + P_1 + \dots + P_t$, the entropy of S_i
 S_2 can be arti $S_2 = \{P_{t+1}, P_{t+2}, P_{t+3}, ... P_{L-1}\}$ (2)

Where P_i presents the probability of each grayscale level

occurrence. Then, let $P_t = P_0 + P_1 + ... + P_t$, the entropy of S_i

and S_2 can be articulated as:
 $H(S_1) = -\sum_{i=0}^{t} \frac{P_i}{$ Where P_i presents the probability of each g
occurrence. Then, let $P_t = P_0 + P_1 + \cdots + P_t$, the
and S_2 can be articulated as:
 $H(S_1) = -\sum_{i=0}^t \frac{P_i}{P_i} \ln \frac{P_i}{P_t}$
 $H(S_2) = -\sum_{i=t+1}^{t-1} \frac{P_i}{1-P_t} \ln \frac{P_i}{1-P_t}$
Consequentl

$$
H(S_1) = -\sum_{i=0}^{t} \frac{P_i}{P_t} \ln \frac{P_i}{P_t}
$$
 (3)

$$
H(S_2) = -\sum_{i=t+1}^{L-1} \frac{P_i}{1 - P_t} \ln \frac{P_i}{1 - P_t}
$$
 (4)

$$
H(S) = H(S1) + H(S2)
$$
\n
$$
(5)
$$

H(S₁) = $-\sum_{i=0}^{L} \frac{P_i}{P_i} \ln \frac{P_i}{P_i}$ (3)
 $H(S_1) = -\sum_{i=0}^{L} \frac{P_i}{P_i} \ln \frac{P_i}{P_i}$ (3)
 $\frac{P_i}{P_i} = -\sum_{i=l+1}^{L-1} \frac{P_i}{1-P_i} \ln \frac{P_i}{1-P_i}$ (4)
 $H(S) = H(S_i) + H(S_2)$ (5)
 $H(S) = H(S_i) + H(S_2)$ (5)
 $H(S) = H(S_i) + H(S_2)$ (5)
 $H(S) = H$ currence. Then, let $P_t = P_0 + P_1 + \dots + P_t$, the entropy of S_t

d S_2 can be articulated as:
 $H(S_1) = -\sum_{i=0}^t \frac{P_i}{P_i} \ln \frac{P_i}{P_t}$ (3)
 $H(S_2) = -\sum_{i=t+1}^{t-1} \frac{P_i}{1-P_t} \ln \frac{P_i}{1-P_t}$ (4)

Consequently, the overall entropy and S_2 can be articulated as:
 $H(S_1) = -\sum_{i=0}^{t} \frac{P_i}{P_i} \ln \frac{P_i}{P_t}$ (3)
 $H(S_2) = -\sum_{i=t+1}^{t-1} \frac{P_i}{1-P_t} \ln \frac{P_i}{1-P_t}$ (4)

Consequently, the overall entropy of the image can be

expressed as the cumulative of the tw $H(S_1) = -\sum_{i=0}^{t} \frac{P_i}{P_i} \ln \frac{P_i}{P_t}$ (3)
 $H(S_2) = -\sum_{i=t+1}^{t-1} \frac{P_i}{1-P_i} \ln \frac{P_i}{1-P_t}$ (4)

Consequently, the overall entropy of the image can be

expressed as the cumulative of the two types of entropy,

denoted as:
 $H(S_1) = -\sum_{i=0}^{n} \frac{P_i}{P_i} \ln \frac{P_i}{P_i}$ (3)
 $H(S_2) = -\sum_{i=+1}^{L-1} \frac{P_i}{1-P_i} \ln \frac{P_i}{1-P_i}$ (4)

Consequently, the overall entropy of the image can be

expressed as the cumulative of the two types of entropy,

denoted as:
 $\frac{F_i}{f_i} = P_i$ H_i (4)
 $H(S_2) = -\sum_{i=1}^{L-1} \frac{P_i}{1-P_i} \ln \frac{P_i}{1-P_i}$ (4)

Consequently, the overall entropy of the image can be

expressed as the cumulative of the two types of entropy,

denoted as:
 $H(S) = H(S_i) + H(S_2)$ (5)
 as: *Theory* $T_{\text{max}} = \frac{P}{P_{\text{max}}} - \frac{P}{P_{\text{max}}}$ *T* $\frac{P}{P_{\text{max}}}$ *T* $\frac{P}{P_{\text{max}}}$ *T* $\frac{P}{P_{\text{max}}}$ *T Z* $\frac{P}{P_{\text{max}}}$ *T T Z* $\frac{P}{P_{\text{max}}}$ *T T Z* (2) that the probability of each grayscale level to *T* pressed as the cumulative of the two types of entropy,
noted as:
 $H(S) = H(S_1) + H(S_2)$ (5)
Next, iterate over all grayscale levels t within the range of
grayscale histogram, calculating the sum of entropies for
expressed is t threshold as:
 $H(S) = H(St) + H(Sz)$ (5)

Next, iterate over all grayscale levels t within the range of

the grayscale histogram, calculating the sum of entropies for

the two classes. Then, the grayscale level corresponding to $H(S) = H(S_1) + H(S_2)$ (5)
Next, iterate over all grayscale levels t within the range of
the grayscale histogram, calculating the sum of entropies for
the two classes. Then, the grayscale level corresponding to
the maximum val

$$
T_g = k \cdot |T_{\text{max}} - T_{\text{min}}| \tag{6}
$$

Next, iterate over all grayscale levels t within the range of
the grayscale histogram, calculating the sum of entropies for
the two classes. Then, the grayscale level corresponding to
the maximum value is denoted as T_{max} the grayscale histogram, calculating the sum of entropies for
the grayscale histogram, calculating the sum of entropies for
the two classes. Then, the grayscale level corresponding to
the maximum value is denoted as T_{max} the two classes. Then, the grayscale level corresponding to
the maximum value is denoted as T_{max} and the grayscale level
corresponding to the maximum value is denoted as T_{min} .
Therefore, the global optimal threshold the maximum value is denoted as T_{max} and the grayscale level
corresponding to the minimum value is denoted as T_{min} .
Therefore, the global optimal threshold T_g can be represented
as:
 $T_g = k \cdot |T_{max} - T_{min}|$ (6)
Where k re For maintain calculate and the corresponding to the minimum value is de

Therefore, the global optimal threshold T_g can

as:
 $T_g = k \cdot |T_{\text{max}} - T_{\text{min}}|$

Where k represents the scaling factor. Althor

threshold T_g can Exercise and optimal threshold T_g can be represented
 $T_g = k \cdot |T_{\text{max}} - T_{\text{min}}|$ (6)

Where k represents the scaling factor. Although the global

reshold T_g can be adaptively selected based on the

stribution of graysc as:
 $T_g = k \cdot |T_{\text{max}} - T_{\text{min}}|$ (6)

Where *k* represents the scaling factor. Although the global

threshold *Tg* can be adaptively selected based on the

distribution of grayscale values in the image, it assumes that

all $T_g = k \cdot |T_{\text{max}} - T_{\text{min}}|$ (6)
Where *k* represents the scaling factor. Although the global
threshold *Tg* can be adaptively selected based on the
distribution of grayscale values in the image, it assumes that
all regions Feature *x* Ferricular 1 $I_g = K \cdot |I_{\text{max}} - I_{\text{min}}|$ (6)

Where *k* represents the scaling factor. Although the global

threshold *Tg* can be adaptively selected based on the

distribution of grayscale values in the image, Where *k* represents the scaling factor. Although the global
threshold *Tg* can be adaptively selected based on the
distribution of grayscale values in the image, it assumes that
all regions of the image are under the sam threshold *Tg* can be adaptively selected based on the distribution of grayscale values in the image, it assumes that all regions of the image are under the same lighting conditions. When local regions of the image have v I grayscale levels t within the range of

n, calculating the sum of entropies for

the grayscale level corresponding to

denoted as T_{max} and the grayscale level

minimum value is denoted as T_{min}

pptimal threshold T_g culating the sum of entropies for
grayscale level corresponding to
ed as T_{max} and the grayscale level
mum value is denoted as T_{min} .
I threshold T_g can be represented
aling factor. Although the global
aling factor. A ses. Then, the grayscale level corresponding to
ses. Then, the grayscale level corresponding to
m value is denoted as T_{max} and the grayscale level
g to the minimum value is denoted as T_{min}
eglobal optimal threshold T esents the probability of each grayscale level

en, let $P_t = P_0 + P_1 + \cdots + P_t$, the entropy of S,

ritculated as:
 $H(S_1) = -\sum_{i=0}^{t} \frac{P_i}{P_i} \ln \frac{P_i}{P_i}$ (3)
 $f(S_2) = -\sum_{i=0}^{t} \frac{P_i}{P_i} \ln \frac{P_i}{P_i}$ (4)
 $f(S_2) = -\sum_{i=t+1}^{t}$

Therefore, in situations where lighting conditions vary
significantly, our study adopts a local adaptive threshold T_i to
address this issue. Assuming point A (x_0 , y_0) is a potential
feature point in the image. A *I***i** and the grays are average value of region *N*, centered *A*, is selected with a side length of L. Then, the local adaptive threshold T_l can be represented as:
 $T_l = k \cdot \frac{\left[\frac{1}{n} \sum_{i=1}^{n} I_{i_{\text{max}}} - \frac{1}{m} \sum_{i=1}$

$$
T_{l} = k \cdot \frac{\left[\frac{1}{n} \sum_{i=1}^{n} I_{i_{\max}} - \frac{1}{m} \sum_{i=1}^{m} I_{i_{\min}} \right]}{I_{i_{\max}}} \tag{7}
$$

scaling from Sole. It solely
feature point in the image. A square region N, centered at A,
is selected with a side length of L. Then, the local adaptive
threshold T_l can be represented as:
 $T_l = k \cdot \frac{\left[\frac{1}{n} \sum_{i=1}^{n} I_{$ selected with a side length of L. Then, the local adaptive
reshold T_l can be represented as:
 $T_l = k \cdot \frac{\left[\frac{1}{n} \sum_{i=1}^{n} I_{i_{\text{max}}} - \frac{1}{m} \sum_{i=1}^{m} I_{i_{\text{min}}} \right]}{I_{i_{\text{ave}}}$ (7)
In equation (7), we define the maximum gra

reshold T_l can be represented as:
 $T_l = k \cdot \frac{\left[\frac{1}{n} \sum_{i=1}^{n} I_{i_{\text{max}}} - \frac{1}{m} \sum_{i=1}^{m} I_{i_{\text{min}}} \right]}{I_{i_{\text{ave}}}}$ (7)

In equation (7), we define the maximum gray value as $I_{i_{\text{max}}}$

d the minimum gray value as $I_{i_{$ $T_i = k \cdot \frac{\left[\frac{1}{n} \sum_{i=1}^{n} I_{i_{\text{max}}} - \frac{1}{m} \sum_{i=1}^{m} I_{i_{\text{min}}} \right]}{I_{i_{\text{ave}}}$ (7)

In equation (7), we define the maximum gray value as $I_{i_{\text{max}}}$

and the minimum gray value as I_{min} in region N. Moreover,
 $I_{i_{\text{ave}}}$ $T_i = k \cdot \frac{\left[\frac{1}{n} \sum_{i=1}^{n} I_{i_{\text{max}}} - \frac{1}{m} \sum_{i=1}^{m} I_{i_{\text{min}}} \right]}{I_{i_{\text{max}}}$ (7)
In equation (7), we define the maximum gray value as I_{max}
and the minimum gray value as I_{min} in region N. Moreover,
 I_{layer} d $T_i = k \cdot \frac{\boxed{n}{2} \cdot \boxed{n_{i_{\text{max}}}} - \boxed{n}{2} \cdot \boxed{l_{i_{\text{min}}}}$ (7)

In equation (7), we define the maximum gray value as I_{max}

and the minimum gray value as I_{min} in region N. Moreover,
 I_{layer} denotes the grayscale aver $T_i = k \cdot \frac{N_i - N_i}{N_{i_{\text{user}}}}$ (1)

In equation (7), we define the maximum gray value as I_{linear}

and the minimum gray value as I_{min} in region N. Moreover,
 I_{layer} denotes the grayscale average value of region N. T

Volume 32, Issue 10, October 2024, Pages 1909-1920

Enginee
and extract semantic information.
YOLOv7 algorithm, as a typical representative cone-Stage target detection algorithm [26], has good real-tim
performance, and its framework architecture is illustrated in **Engineering Letters**

dextract semantic information.

YOLOv7 algorithm, as a typical representative of introduce supplementary parameter-

Stage target detection algorithm [26], has good real-time the module is that major **Engineering Letters**
and extract semantic information.
YOLOv7 algorithm, as a typical representative of introduce supplementary pone-Stage target detection algorithm [26], has good real-time the module is that majori
perf **Engineering Letters**

and extract semantic information.

YOLOv7 algorithm, as a typical representative of introduce supplementary paramet

One-Stage target detection algorithm [26], has good real-time the module is that m **Engineering Letters**

and extract semantic information. attention weights 1

YOLOv7 algorithm, as a typical representative of introduce supplemer

One-Stage target detection algorithm [26], has good real-time the module i **Engineering Letters**

Manustract semantic information.

TOLOV7 algorithm, as a typical representative of introduce supelementary parameter

One-Stage target detection algorithm [26], has good real-time the module is that **Engineering Letters**

and extract semantic information.

YOLOv7 algorithm, as a typical representative of introduce supplementary pa

One-Stage target detection algorithm [26], has good real-time the module is that majori **Engineering Letters**

and extract semantic information.

YOLOv7 algorithm, as a typical representative of introduce supplementary para

One-Stage target detection algorithm [26], has good real-time the module is that majo **Engineering Letters**

and extract semantic information. attention weights for feature

YOLOv7 algorithm, as a typical representative of introduce supplementary parar

One-Stage target detection algorithm [26], has good re Extended-ELAN), which utilizes extension, stochastic and extract semantic information.

Mone-Stage target detection algorithm [26], has good real-time the module is that major

performance, and its framework architecture i and extract semantic information. The action and extract semantic information.

MCLOv7 algorithm, as a typical representative of introduce supplementary

One-Stage target detection algorithm [26], has good real-time the mo and extract semantic information.

YOLOv7 algorithm, as a typical representative of introduce supplementary para-

One-Stage target detection algorithm [26], has good real-time

the module is that majority of

performance, and extract semantic information. The act of the module strate integrity one-Stage target detection algorithm [26], has good real-time the module is that major performance, and its framework architecture is illustrated in YOLOv7 algorithm, as a typical representative of introduce supplementary p

One-Stage target detection algorithm [26], has good real-time the module is that majority

performance, and its framework architecture is illustra One-Stage target detection algorithm [26], has good real-time the module is that major performance, and its framework structure is illustrated in on the selection of special (RepConv) [27] in the network structure, which d performance, and its framework architecture is illustrated in on the selection of specify (Fig. 6. First, YOLOv7 introduces reparameterization necessity for structural all (RepConv) [27] in the network structure, which dec Fig. 6. First, YOLOv7 introduces reparameterization necessity for structural alteration (RepConv) [27] in the network structure, which decreases the features:

parameter count and computational demands, thereby 1) SimAM is (RepConv) [27] in the network structure, which decreases the features:

parameter count and computational demands, thereby 1) SimAM is able to model r

improving the network's operational efficiency. Then, at multiple lev parameter count and computational demands, thereby 1) SimAM is able to model rel improving the network's operational efficiency. Then, at multiple levels, and it correct CIAN), which utilizes extension, stochastic model to improving the network's operational efficiency. Then, at multiple levels, and it (YOLOv7) improved ELAN by proposing E-ELAN features and high-level server (Extended-ELAN), which utilizes extension, stochastic model to unde YOLOv7 improved ELAN by proposing E-ELAN features and high-le

(Extended-ELAN), which utilizes extension, stochastic model to under

disruption, and merging bases to achieve continuous comprehensively.

enhancement of the xtended-ELAN), which utilizes extension, stochastic model to understand

struption, and merging bases to achieve continuous comprehensively.

SimAM not only focuses on the seserving the integrity of the original gradient p disruption, and merging bases to achieve continuous

emhancement of the network's learning capabilities while

2) SimAM not only for

emerging the integrity of the original gradient pathways.

Musconsity is also able

also enhancement of the network's learning capabilities while 2) SimAM not only focuses on
preserving the integrity of the original gradient pathways. but is also able to mine
Also, E-ELAN can instruct different computational So, E-ELAN can instruct different computational modules

learn more different features. The label assignment

thodology employed by YOLOv7 integrates the cross-grid

the representational capital

anche technique utilized i to learn more different features. The label assignment

methodology employed by YOLOv7 integrates the cross-grid

search technique utilized in YOLOv5, along with the

matching strategy adopted in YOLOv5. In addition to thi

precision.

methodology employed by YOLOv7 integrates the cross-grid

search technique utilized in YOLOv5, along with the

training strategy adopted in YOLOx. In addition to this, the

training approach incorporating an auxiliary head search technique utilized in YOLOv5, along with the representational capabilities

matching strategy adopted in YOLOx. In addition to this, the 3) SimAM introduces spatial

training approach incorporating an auxiliary head matching strategy adopted in YOLOx. In addition to this, the 3) SimAM introduces spatial is training approach incorporating an auxiliary head is used in the spatial distribution of YOLOv7, which enhances the accuracy by el training approach incorporating an auxiliary head is used in

YOLOv7, which enhances the accuracy by elevating the

training expenses and does not affect the inference time.

Although YOLOv7 runs faster, its detection accu YOLOv7, which enhances the accuracy by elevating the
training expenses and does not affect the inference time.

localize the target region,

Although YOLOv7 runs faster, its detection accuracy is

lottention Mechanism) [2 training expenses and does not affect the inference time. localize the target

Although YOLOv7 runs faster, its detection accuracy is

traget detection and

lower, so this paper introduces SimAM (Spatial information 4) Sim Although YOLOv7 runs faster, its detection accuracy is

lower, so this paper introduces SimAM (Spatial information

4) SimAM is adaptive in that

Attention Mechanism) [28] in YOLOv7 to enhance its

orderateristics of atten lower, so this paper introduces SimAM (Spatial information 4) SimAM is adaptive in Attention Mechanism) [28] in YOLOv7 to enhance its digits its focus of atter
precision.

The Attention Mechanism is a technique widely emp Attention Mechanism) [28] in YOLOv7 to enhance its

generation.

The Attention Mechanism is a technique widely employed

in computer science and machine learning, where the output

of each neuron is influenced not only by precision.

The Attention Mechanism is a technique widely employed

in computer science and machine learning, where the output

of each neuron is influenced not only by the outputs of all

neurons in the preceding layer b

g Letters
attention weights for feature maps without the need to
introduce supplementary parameters. An additional benefit of
the module is that majority of the operations are predicated
on the selection of specified energ g Letters
attention weights for feature maps without the need to
introduce supplementary parameters. An additional benefit of
the module is that majority of the operations are predicated
on the selection of specified energ **Example 18 Example 10**
attention weights for feature maps without the need to
introduce supplementary parameters. An additional benefit of
the module is that majority of the operations are predicated
on the selection of s **Exercise 15 Exercise 15 Exercise 2016**
 Exercise 2 g Letters
attention weights for feature maps without the need to
introduce supplementary parameters. An additional benefit of
the module is that majority of the operations are predicated
on the selection of specified ene features: **Exercise 1)**
 Exercise 1)
 Exercise 1)
 Exercise 1)
 **EXERCIST AM is that majority of the operations are predicated

on the selection of specified energy functions, reducing the

necessity for structural alterations** etters

attion weights for feature maps without the need to

dduce supplementary parameters. An additional benefit of

module is that majority of the operations are predicated

he selection of specified energy functions, r **Exercise and High-Level Servel Servel Server Server Server Server Server Server School Server School Server School Server School Server School Server School Server Server Server Server Server Server Server Server Server S Exercise 19.1**
 Exercise 10.1
 attention weights for feature maps without the need to
introduce supplementary parameters. An additional benefit of
the module is that majority of the operations are predicated
on the selection of specified energy function ition weights for feature maps without the need to
duce supplementary parameters. An additional benefit of
module is that majority of the operations are predicated
he selection of specified energy functions, reducing the
s

- comprehensively.
- duce supplementary parameters. An additional benefit of
module is that majority of the operations are predicated
he selection of specified energy functions, reducing the
ssity for structural alterations. SimAM has the foll module is that majority of the operations are predicated
he selection of specified energy functions, reducing the
ssity for structural alterations. SimAM has the following
tres:
SimAM is able to model relationships between he selection of specified energy functions, reducing the
ssity for structural alterations. SimAM has the following
tres:
SimAM is able to model relationships between features
at multiple levels, and it can focus on both lo ssity for structural alterations. SimAM has the followin
res:
SimAM is able to model relationships between feature
at multiple levels, and it can focus on both low-leve
features and high-level semantic features, enabling t features:

1) SimAM is able to model relationships between features

at multiple levels, and it can focus on both low-level

features and high-level semantic features, enabling the

model to understand the input data more
 SimAM is able to model relationships between features
at multiple levels, and it can focus on both low-level
features and high-level semantic features, enabling the
model to understand the input data more
comprehensively.
 at multiple levels, and it can focus on both low-level
features and high-level semantic features, enabling the
model to understand the input data more
comprehensively.
SimAM not only focuses on the features of each channel features and high-level semantic features, enabling the
model to understand the input data more
comprehensively.
SimAM not only focuses on the features of each channel,
but is also able to mine the relationships between
di model to understand the input data more
comprehensively.
SimAM not only focuses on the features of each channel,
but is also able to mine the relationships between
different channels. This attention mechanism enables
SimAM comprehensively.

2) SimAM not only focuses on the features of each channel,

but is also able to mine the relationships between

different channels. This attention mechanism enables

SimAM to better learn the semantic con SimAM not only focuses on the features of each channel,
but is also able to mine the relationships between
different channels. This attention mechanism enables
SimAM to better learn the semantic connections
between feature
-
- but is also able to mine the relationships between
different channels. This attention mechanism enables
SimAM to better learn the semantic connections
between features and improves the model's
representational capabilities different channels. This attention mechanism enables
SimAM to better learn the semantic connections
between features and improves the model's
representational capabilities.
SimAM introduces spatial information and focuses SimAM to better learn the semantic connections
between features and improves the model's
representational capabilities.
SimAM introduces spatial information and focuses on
the spatial distribution of features. This attenti between features and improves the model's
representational capabilities.
SimAM introduces spatial information and focuses on
the spatial distribution of features. This attention
mechanism enhances the model's ability to pr representational capabilities.

SimAM introduces spatial information and focuses on

the spatial distribution of features. This attention

mechanism enhances the model's ability to precisely

localize the target region, in SimAM introduces spatial information and focuses on
the spatial distribution of features. This attention
mechanism enhances the model's ability to precisely
localize the target region, increasing the precision of
target de the spatial distribution of features. This attention
mechanism enhances the model's ability to precisely
localize the target region, increasing the precision of
target detection and segmentation.
SimAM is adaptive in that mechanism enhances the model's ability to precisely
localize the target region, increasing the precision of
target detection and segmentation.
4) SimAM is adaptive in that it is able to automatically
adjust its focus of at localize the target region, increasing the precision of
target detection and segmentation.
4) SimAM is adaptive in that it is able to automatically
adjust its focus of attention according to the different
characteristics o target detection and segmentation.

4) SimAM is adaptive in that it is able to automatically

adjust its focus of attention according to the different

characteristics of the input data. This adaptability allows

SimAM to SimAM is adaptive in that it is able to automatically
adjust its focus of attention according to the different
characteristics of the input data. This adaptability allows
SimAM to be applied to a variety of different type adjust its focus of attention according to the different
characteristics of the input data. This adaptability allows
SimAM to be applied to a variety of different types of
data, improving the module's capacity for general characteristics of the input data. This adaptability allows

SimAM to be applied to a variety of different types of

data, improving the module's capacity for generalization.

As illustrated in Fig. 7, SimAM estimates

th

Volume 32, Issue 10, October 2024, Pages 1909-1920

E. *Target Detection Combined with Eippolar Line*
 E. Target Detection Combined with Eippolar Line
 Constraint to Reject Dynamic Feature Points

Previous SLAM methods based on target detection relied

celusively on t **E.** Target Detection Combined with Eippolar Line
 Constraint to Reject Dynamic Feature Points

Previous SLAM methods based on target detection relied

celusively on these results to eliminate dynamic feature

pints. How **Example 1.1** Engineering Letters

E. Target Detection Combined with Eippolar Line

Constraint to Reject Dynamic Feature Points

Previous SLAM methods based on target detection relied

clusively on these results to elimin **Example 1.1** Entertain whether inherently mobile objects, such as carrenains

External to Reject Dynamic Feature Points

Previous SLAM methods based on target detection relied

exclusively on these results to eliminate d **Example 1.1** Englineering Letters

E. Target Detection Combined with Eippolar Line

Constraint to Reject Dynamic Feature Points

Previous SLAM methods based on target detection relied

exclusively on these results to eli **Example Example Example 2**
 E. Target Detection Combined with Eippolar Line Then, we express the distance

Constraint to Reject Dynamic Feature Points

Previous SLAM methods based on target detection relied

exclusivel **E.** Target Detection Combined with Eippolar Line

Then, we express the dis

Constraint to Reject Dynamic Feature Points

Then, we express the dis

current of the exclusively on these results to eliminate dynamic feature
 E. Target Detection Combined with Eippolar Line

Constraint to Reject Dynamic Feature Points

ine as d, which is a

calculated as follows:

SEAM methods based on target detection relied

exclusively on these results to **E.** Target Detection Combined with Eippolar Line

Constraint to Reject Dynamic Feature Points

Then, we express the distant

Constraint to Reject Dynamic Feature Points

Previous SLAM methods based on target detection re E. Target Detection Combined with Eippolar Line

Constraint to Reject Dynamic Feature Points

Previous SLAM methods based on target detection relied

exclusively on these results to eliminate dynamic feature

points. Howe *E. Target Detection Combined with Eippolar Line* Then, we express the distant Constraint to Reject Dynamic Feature Points in the and d exclusively on these results to eliminate dynamic feature points. However, target d *E. Target Detection Combined with Eippolar Line*

Constraint to Reject Dynamic Feature Points

Previous SLAM methods based on target detection relied

exclusively on these results to eliminate dynamic feature

points. Ho *E. Target Detection Combined with Eippolar Line*

In as d, which is also known

Constraint to Reject Dynamic Feature Points

exclusively on these results to eliminate dynamic feature

points. However, target detection ne Constraint to Reject Dynamic Feature Points

calculated as fo

exclusively on these results to eliminate dynamic feature

points. However, target detection networks often struggle to

ascertain whether inherently mobile o Previous SLAM methods based on target detection relied

clusively on these results to eliminate dynamic feature

ints. However, target detection networks often struggle to

creatin whether inherently mobile objects, such exclusively on these results to eliminate dynamic feature

points. However, target detection networks often struggle to

ascertain whether inherently mobile objects, such as cars, are

extremely in motion. Consequently, e points. However, target detection networks often struggle to a
secretain whether inherently mobile objects, such as cars, are
currently in motion. Consequently, even when a car remains the prom Eq. 11, in an ideal sect
at ascertain whether inherently mobile objects, such as cars, are
currently in motion. Consequently, even when a car remains
discard associated feature points, markedly reducing the point *p*₃, representing the current
dis currently in motion. Consequently, even when a car remains
stationary in the environment, the system may erroneously
onit p_2 , representing the
discard associated feature points, markedly reducing the pool
freepore, it

stationary in the environment, the system may erroneously

discard associated feature points, markedly reducing the pool

Therefore, it may be considered

available for pose estimation. Moreover, these approaches

frequen discard associated feature points, markedly reducing the pool
available for pose estimation. Moreover, these approaches
frequently fail to filter out feature points attributed to static moise typically results in d
points available for pose estimation. Moreover, these approaches
frequently fail to filter out feature points attributed to static
objects like books or chairs that are being displaced by
individuals, resulting in inaccurate data Expectively fail to filter out feature points attributed to static

income typically results in the

discussion charged and in this paper, the threshold is

finding in inaccurate data association in It his paper, the thre objects like books or chairs that are being displaced by

individuals, resulting in inaccurate data associations and a

in this paper, the threshold is

significant degradation in SLAM system precision.

In order to tackl individuals, resulting in inaccurate data associations and a

significant degradation in SLAM system precision.

Ins order to tackle these challenges, we integrate target

To summarize, the step detection with an epipolar significant degradation in SLAM system precision.

less than e, we regard then order to tackle these challenges, we integrate target To summarize, the detection with an epipolar constraint approach to eliminate points in

In order to tackle these challenges, we integrate target To summarize, the steps for
detection with an epipolar constraint approach to eliminate points in our study are as follow
dfp. First, we need to align the feature p detection with an epipolar constraint approach to eliminate points in our study are as follows
dfp. First, we need to align the feature points from two Step 1: We employ the implomental matrix. Next, we can assess the dis consecutive frames and use them to calculate the various targets in debli
fundamental matrix. Next, we can assess the distance positions within these
between the feature points in the current frame and their detection box fundamental matrix. Next, we can assess the distance positions within
between the feature points in the current frame and their detection boxes. In
related epipolar lines. Greeater distances indicate a higher about the ta

as:

$$
P_1 = [x_1, y_1, 1], P_2 = [x_2, y_2, 1]
$$
 (8)

The chi-square coordinates of
$$
P_1
$$
 and P_2 can be expressed
\nas:
\n $P_1 = [x_1, y_1, 1], P_2 = [x_2, y_2, 1]$
\nIn which x and y represent the pixel coordinate values of
\nthe feature points, the polar line l_2 can be expressed as:
\n
$$
l_2 = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = F \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}
$$

\n
$$
l_3 = \begin{bmatrix} 80 & 1000 \\ 1 & 1 \end{bmatrix}
$$

\n
$$
l_4 = \begin{bmatrix} 1 & 000 \\ 1 & 0 \end{bmatrix}
$$

\n
$$
l_5 = \begin{bmatrix} 1 & 000 \\ 1 & 0 \end{bmatrix}
$$

\n
$$
l_6 = \begin{bmatrix} 1 & 000 \\ 1 & 0 \end{bmatrix}
$$

\n
$$
l_7 = \begin{bmatrix} 1 & 000 \\ 1 & 0 \end{bmatrix}
$$

\n
$$
l_8 = \begin{bmatrix} 1 & 000 \\ 1 & 0 \end{bmatrix}
$$

\n
$$
l_9 = \begin{bmatrix} 1 & 00 \\ 1 & 0 \end{bmatrix}
$$

\n
$$
l_1 = \begin{bmatrix} 1 & 00 \\ 1 & 0 \end{bmatrix}
$$

\n
$$
l_1 = \begin{bmatrix} 1 & 00 \\ 1 & 0 \end{bmatrix}
$$

\n
$$
l_1 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}
$$

\n
$$
l_1 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}
$$

\n
$$
l_1 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}
$$

\n
$$
l_1 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}
$$

\n
$$
l_1 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}
$$

\n
$$
l_1 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}
$$

\n
$$
l_1 = \begin{
$$

$$
p_2^T F p_1 = p_2^T l_2 = 0 \tag{10}
$$

Then, we express the distance between *p***₂ and the epipolar e as** *d***, which is also known as the offset dist. It is levelated as follows:
** $\begin{bmatrix} p_2^T F p_1 \end{bmatrix}$ **(11) EXECUTE:**

Then, we express the distance between p_2 and the epipolar

line as *d*, which is also known as the offset dist. It is

calculated as follows:
 $d = \frac{|p_2^T F p_1|}{\sqrt{x^2 + x^2}}$ (11) **g Letters**
Then, we express the distance between p_2 and the
line as d, which is also known as the offset d
calculated as follows:
 $d = \frac{|p_2^T F p_1|}{\sqrt{X^2 + Y^2}}$ ce between p_2 and the epipolar

own as the offset dist. It is
 $\frac{p_2^T F p_1}{r^2 + Y^2}$ (11)

enario, when $d = 0$, the feature

rrent frame, is situated on l_2 .

$$
d = \frac{|p_2^T F p_1|}{\sqrt{X^2 + Y^2}}
$$
 (11)

2 2 Figure 1.1 and the epipolar
 Theorem as the offset dist. It is
 $\frac{p_2^T F p_1}{X^2 + Y^2}$ (11)
 $\frac{X^2 + Y^2}{X^2 + Y^2}$ (11)

cenario, when $d = 0$, the feature

urrent frame, is situated on l_2

red static.

presence of v **Example 11, 11, 11, in an ideal scenario,** the feature of the feature of the feature data scenario, when $d = \frac{|p_2^T F p_1|}{\sqrt{X^2 + Y^2}}$ (11)
From Eq. 11, in an ideal scenario, when $d = 0$, the feature int p_2 , represent **pointiff**
 point 1.1. Then, we express the distance between p_2 and the epipolar

line as *d*, which is also known as the offset dist. It is

calculated as follows:
 $d = \frac{|p_2^T F p_1|}{\sqrt{X^2 + Y^2}}$ (11)

From Eq. 11, i

ance between p_2 and the epipolar

mown as the offset dist. It is
 $\frac{p_2^T F p_1}{X^2 + Y^2}$

cenario, when $d = 0$, the feature

current frame, is situated on l_2

red static.

presence of various forms of

ne offset di **Example 12.11**

Then, we express the distance between p_2 and the epipolar

line as d, which is also known as the offset dist. It is

calculated as follows:
 $d = \frac{|p_2^T F p_1|}{\sqrt{X^2 + Y^2}}$ (11)

From Eq. 11, in an ideal Then, we express the distance between p₂ and the epipolar

e as d, which is also known as the offset dist. It is

cludated as follows:
 $d = \frac{|p_2^T F p_1|}{\sqrt{X^2 + Y^2}}$ (11)

From Eq. 11, in an ideal scenario, when $d = 0$, Then, we express the distance between p_2 and the epipolar
line as d, which is also known as the offset dist. It is
calculated as follows:
 $d = \frac{|p_2^T F p_1|}{\sqrt{X^2 + Y^2}}$ (11)
From Eq. 11, in an ideal scenario, when $d = 0$ Then, we express the distance between p_2 and the epipolar
line as *d*, which is also known as the offset dist. It is
calculated as follows:
 $d = \frac{|p_2^T F p_1|}{\sqrt{X^2 + Y^2}}$ (11)
From Eq. 11, in an ideal scenario, when *d* and an external in a static distribution of the inproved YOLOv7 to identify

the point point as static. It is calculated as follows:
 $d = \frac{|p_2^T F p_1|}{\sqrt{X^2 + Y^2}}$ (11)

From Eq. 11, in an ideal scenario, when $d = 0$, the The steaded as follows.
 $d = \frac{|p_2^T F p_1|}{\sqrt{X^2 + Y^2}}$ (11)

From Eq. 11, in an ideal scenario, when $d = 0$, the feature

int p_2 , representing the current frame, is situated on l_2

lerefore, it may be considered sta $d = \frac{|p'_2 F p_1|}{\sqrt{X^2 + Y^2}}$ (11)

From Eq. 11, in an ideal scenario, when $d = 0$, the feature

point p₂, representing the current frame, is situated on l₂.

Therefore, it may be considered static.

However, in practic $d = \frac{1}{\sqrt{X^2 + Y^2}}$ (11)

From Eq. 11, in an ideal scenario, when $d = 0$, the feature

int p_2 , representing the current frame, is situated on l_2

lerefore, it may be considered static.

However, in practice, the pr

 $\sqrt{X^2 + Y^2}$

From Eq. 11, in an ideal scenario, when $d = 0$, the feature

point p_2 , representing the current frame, is situated on l_2 .

Therefore, it may be considered static.

However, in practice, the presence o From Eq. 11, in an ideal scenario, when $d = 0$, the feature
point p_2 , representing the current frame, is situated on l_2 .
Therefore, it may be considered static.
However, in practice, the presence of various forms of point p_2 , representing the current frame, is situated on l_2 .
Therefore, it may be considered static.
However, in practice, the presence of various forms of
noise typically results in the offset dist exceeding 0, yet Therefore, it may be considered static.

However, in practice, the presence of various forms of

noise typically results in the offset dist exceeding 0, yet

remaining below a defined empirical threshold, denoted as ε tasks. ise typically results in the offset dist exceeding 0, yet
maining below a defined empirical threshold, denoted as ε .
this paper, the threshold is selected as 0.6 , and when d is
s than ε , we regard this feature remaining below a defined empirical threshold, denoted as ε .
In this paper, the threshold is selected as 0.6, and when *d* is
less than ε , we regard this feature point as static.
To summarize, the steps for removin

In this paper, the threshold is selected as 0.6, and when d is less than ε , we regard this feature point as static.
To summarize, the steps for removing dynamic feature points in our study are as follows:
Step 1: We less than ε , we regard this feature point as static.
To summarize, the steps for removing dynamic feature
points in our study are as follows:
Step 1: We employ the improved YOLOv7 to identify
various targets in deblurr To summarize, the steps for removing dynamic feature
points in our study are as follows:
Step 1: We employ the improved YOLOv7 to identify
various targets in deblurred images and ascertain their
positions within these imag points in our study are as follows:

Step 1: We employ the improved YOLOv

various targets in deblurred images and as

positions within these images, while also

detection boxes. In addition, we extract semanti

about the deblurred images and ascertain their
nese images, while also delineating
ddition, we extract semantic information
provide necessary data for subsequent
b determine whether those feature points
ject detection frame satisfy In this section, we extract semantic information

we asses. In addition, we extract semantic information

we the targets to provide necessary data for subsequent

ks.

Step 2: We need to determine whether those feature poi detection boxes. In addition, we extract semantic information
about the targets to provide necessary data for subsequent
tasks.
Step 2: We need to determine whether those feature points
in the dynamic object detection fram

about the targets to provide necessary data for subsequent
tasks.
Step 2: We need to determine whether those feature points
in the dynamic object detection frame satisfy epipolar
constraint. If the feature points in the de tasks.

Step 2: We need to determine whether those feature points

in the dynamic object detection frame satisfy epipolar

constraint. If the feature points in the detection frame don't

satisfy epipolar constraint, they a Step 2: We need to determine whether those teature points
in the dynamic object detection frame satisfy epipolar
constraint. If the feature points in the detection frame don't
satisfy epipolar constraint, they are consider in the dynamic object detection frame satisty epipolar
constraint. If the feature points in the detection frame don't
satisfy epipolar constraint, they are considered as dynamic
feature points and are no longer used in the constrant. If the teature points in the detection frame don't
satisfy epipolar constraint, they are considered as dynamic
feature points and are no longer used in the subsequent
tracking threads.
IV. EXPERIMENTS
In this se satisty epipolar constraint, they are considered as dynamic
feature points and are no longer used in the subsequent
tracking threads.
IV. EXPERIMENTS
In this section, we assess the efficacy of our system by
conducting eval teature points and are no longer used in the
tracking threads.
IV. EXPERIMENTS
In this section, we assess the efficacy of or
conducting evaluations employing the TU
Subsequently, we compare the outcomes with the
from ORB-S IV. EXPERIMENTS
In this section, we assess the efficacy of our system by
anducting evaluations employing the TUM dataset.
ubsequently, we compare the outcomes with those obtained
om ORB-SLAM3. In addition, this paper also IV. EXPERIMENTS
In this section, we assess the efficacy of our system by
nducting evaluations employing the TUM dataset.
bsequently, we compare the outcomes with those obtained
om ORB-SLAM3. In addition, this paper also co In this section, we assess the efficacy of our system by
conducting evaluations employing the TUM dataset.
Subsequently, we compare the outcomes with those obtained
from ORB-SLAM3. In addition, this paper also compares
wit conducting evaluations employing the TUM dataset.
Subsequently, we compare the outcomes with those obtained
from ORB-SLAM3. In addition, this paper also compares
with advanced VS algorithms that utilize object detection i

16 B in the moment of material complete the moment of the state in the state of the state in Fig. 10, θ and θ is the state in Fig. 10, θ and θ is the state in Fig. 10, θ and θ is the state in Fig. 10, $\$ IN BOGB of memory.

In the TUM RGB-D dataset and evaluation

In TUM RGB-D dataset 130

Vision Group at the Technic

represents a large-scale resource

Fig. 10. Epipolar constraint

The chi-square coordinates of P₁ and P *A. TUM dataset and ev*
 $\begin{array}{ccc}\nP_1 \\
\hline\n\end{array}$ $\begin{array}{ccc}\nP_2 \\
\hline\n\end{array}$ The TUM RGB-D dataset and ev

The TUM RGB-D dataset and ev

Fig. 10. Epipolar constraint

Fig. 10. Epipolar constraint

Fig. 10. Epipolar constraint Fig. 10. Euphar point in space. *P* and *B* section, we assess the enemic and *M*₂, *l* and *I* conducting evaluations employing the T

In this section, We compute the outcomes with the subsequently, we compute the outc as inustrated in Fig. 10, *U_N* and *O₂* uncal *O₂* uncal *C* and *C* is the point *P* on *M*_{*i*} and *D₂* is described in the point *P* on *M*_{*i*} and *H*₂, *I* and *H*₂, *I* and *H*₂, *I* and *H*₂, *I* The movement in the movement of a careter out of the point of the point of the point of the point M_2 is described to the point P on M_1 and M_2 , h and h conducting evaluations emplies
 κ . The point P on arison in point in particular to the point P on M_i and A₂, 1_i and 1₂ conducting evaluations emply
sequently, we compare the of the point P on M_i and M_2 , 1_i and 1₂ conducting evaluations emply
sequently, w Fig. 10. Epipolar constraint

The chi-square coordinates of P_1 and P_2 can be expressed fital values of the system's set our system's
 $P_1 = [x_1, y_1, 1], P_2 = [x_2, y_2, 1]$ (8) packets include a greater nu

In which x a with advanced VS algorithms that utilize of
dynamic surroundings such satisfies and AHV-SLAM
all experiments in this paper were conduct
system featuring an Intel iS CPU, RTX10
is of Ph p and explicit the TUM RGB-D dataset Subsequently, we compare the outcomes with those obtained
from ORB-SLAM3. In addition, this paper also compares
with advanced VS algorithms that utilize object detection in
dynamic surroundings such as AHY-SLAM and RDS-SL From ORB-SLAM3. In addition, this paper also compares
with advanced VS algorithms that utilize object detection in
dynamic surroundings such as AHY-SLAM and RDS-SLAM.
All experiments in this paper were conducted on a compu with advanced VS algorithms that utilize object detection in
dynamic surroundings such as AHY-SLAM and RDS-SLAM.
All experiments in this paper were conducted on a computer
system featuring an Intel i5 CPU, RTX1050Ti GPU, a dynamic surroundings such as AHY-SLAM and RDS-SLAM.
All experiments in this paper were conducted on a computer
system featuring an Intel i5 CPU, RTX1050Ti GPU, and
16GB of memory.
A. TUM dataset and evaluation metrics
The All experiments in this paper were conducted on a computer
system featuring an Intel i5 CPU, RTX1050Ti GPU, and
16GB of memory.
A. *TUM dataset and evaluation metrics*
The TUM RGB-D dataset [30], provided by the Computer
V Existen featuring an Intel is CPU, RTX1050Ti GPU, and 16GB of memory.

A. TUM dataset and evaluation metrics

The TUM RGB-D dataset [30], provided by the Computer

Vision Group at the Technical University of Munich,

repr 16GB of memory.

16GB of memory.

16GB of memory.

26 and evaluation metrics

The TUM RGB-D dataset [30], provided by the Computer

Vision Group at the Technical University of Munich,

represents a large-scale resource tha *A. TUM dataset and evaluation metrics*
The TUM RGB-D dataset [30], provided by t
Vision Group at the Technical University
represents a large-scale resource that has set a for
evaluating SLAM systems. We utilize
packages t 1. TUM dataset and evaluation metrics
The TUM RGB-D dataset [30], provided by the Computer
sion Group at the Technical University of Munich,
presents a large-scale resource that has set a new standard
r evaluating SLAM sys The TUM RGB-D dataset [30], provided by the Computer
Vision Group at the Technical University of Munich,
represents a large-scale resource that has set a new standard
for evaluating SLAM systems. We utilized five data
pack Vision Group at the Technical University of Munich,
represents a large-scale resource that has set a new standard
for evaluating SLAM systems. We utilized five data
packages that encompass a significant number of dynamic
o represents a large-scale resource that has set a new standard
for evaluating SLAM systems. We utilized five data
packages that encompass a significant number of dynamic
objects to test our system's performance, respectivel for evaluating SLAM systems. We utilized five data
packages that encompass a significant number of dynamic
objects to test our system's performance, respectively
fr3/walking/xyz, fr3/walking/half, fr3/walking/static,
fr3/w beta the completion of the system's performance of dynamic

bijects to test our system's performance, respectively

3/walking/xyz, fr3/walking/half, fr3/walking/static,

3/walking/rpy, and fr3/sitting/static. The initial f Soly and the mean of the meaning of the meaning of the meaning the meaning the meaning the meaning the meaning the control of the meaning checkets include a greater number of dynamic objects, altered include a greater numb

method we proposed: Absolute Trajectory Error (ATE), which measures the disparity between estimated and ground
truth trajectories, and Relative Pose Error (RPE), utilized to fr3/walking/rpy, and fr3/sitting/static. The initial four data
packets include a greater number of dynamic objects,
whereas the final data packet has a smaller quantity of
dynamic objects.
We utilize two metrics to assess

Engineering Letters

comparative analysis of the experimental data acquired from dynamic environments, the tra

our system against these obtained from ORB-SLAM3, as system closely matches the groun

shown in Table I to I **Engineering Letters**

comparative analysis of the experimental data acquired from dynamic environments, the tra-

our system against these obtained from ORB-SLAM3, as system closely matches the grour

shown in Table I to **Engineering Letters**

comparative analysis of the experimental data acquired from dynamic environments, the

our system against these obtained from ORB-SLAM3, as system closely matches the gr

shown in Table I to III. In **Engineering Letters**

comparative analysis of the experimental data acquired from

dynamic environments, the t

our system against these obtained from ORB-SLAM3, as

system closely matches the group

shown in Table I to I **Engineering Letters**

comparative analysis of the experimental data acquired from

our system against these obtained from ORB-SLAM3, as

system closely match

shown in Table I to III. In these tables, RMSE (Root Mean

the **Engineering Letters**

comparative analysis of the experimental data acquired from dynamic environments, the tive our system closine of the colume of the SCLAM3, as system closely matches the group of the SCLAM3, as syste **Engineering Letters**

comparative analysis of the experimental data acquired from dynamic environments, our system against these obtained from ORB-SLAM3, as system closely matches the shown in Table I to III. In these tab **Engineering Letters**

comparative analysis of the experimental data acquired from dynamic environments, the tra-

our system against these obtained from ORB-SLAM3, as system closely matches the groun

shown in Table I to **Engineering Letters**

comparative analysis of the experimental data acquired from dynamic environments, the trour system against these obtained from ORB-SLAM3, as system closely matches the groum

shown in Table I to III. **Engineering Letters**

comparative analysis of the experimental data acquired from

our system against these obtained from ORB-SLAM3, as

system closely matches the gre

shown in Table I to III. In these tables, RMSE (Root comparative analysis of the experimental data acquired from

our system against these obtained from ORB-SLAM3, as

system closely matches the

shown in Table I to III. In these tables, RMSE (Root Mean

the proposed system comparative analysis of the experimental data acquired from dynamic environment our system against these tobtained from ORB-SLAM3, as system closely match shown in Table I to III. In these tables, RMSE (Root Mean the propo comparative analysis of the experimental data acquired from

dynamic environments, the

our system against these obtained from ORB-SLAM3, as

system closely matches the

shown in Table I to III. In these tables, RMSE (Root our system against these obtained from ORB-SLAM3, as system closely matches the
shown in Table I to III. In these tables, RMSE (Root Mean the proposed system der
square Error) quantifies the disparity between predicted and shown in Table I to III. In these tables, RMSE (Root Mean

Square Error) quantifies the disparity between predicted and

localization performan

actual values. S.D. (Standard Deviation) gauges the compared it with rece

to Square Error) quantifies the disparity between predicted and
actual values. A lower RMSE signifies closer approximation To furth
to the true values. S.D. (Standard Deviation) gauges the
compared i
spread of values within a tual values. A lower RMSE signifies closer approximation To further validate the advation the true values. S.D. (Standard Deviation) gauges the compared it with recently publication inclearing reduced variability. Tables I to the true values. S.D. (Standard Deviation) gauges the compared it with recently publ
spread of values within a dataset, with a smaller standard as RDS-SLAM and AHY-SLA
deviation indicating reduced variability and enhanc spread of values within a dataset, with a smaller standard
deviation indicating reduced variability and enhanced system system exhibits signifi
stability. Tables 1 through III demonstrate that our system the five sequences deviation indicating reduced variability and enhanced system system exhibits significantly lot stability. Tables I through III demonstrate that our system the five sequences compained bulgh-dynamic sequences, confirming th stability. Tables I through III demonstrate that our system

outperforms ORB-SLAM3 by over 91% in most demonstrating its superior p

high-dynamic sequences, confirming the superior capabilities. As a crucial com

performan

outperforms ORB-SLAM3 by over 91% in most demonstrating its sup
high-dynamic sequences, confirming the superior capabilities. As a crue
performance of our system in highly dynamic environments. real-time capability is
fle mather of the supervior appearing the superior capabilities. As a crucial compromement of our system in highly dynamic environments.

The performance in low dynamic surroundings is slightly we also measured the runtime of

g Letters

dynamic environments, the trajectory estimated by our

system closely matches the ground truth trajectory. Therefore,

the proposed system demonstrates superior tracking and

localization performance.

To furthe g Letters

dynamic environments, the trajectory estimated by our

system closely matches the ground truth trajectory. Therefore,

the proposed system demonstrates superior tracking and

localization performance.

To furthe **Example 19 Letters**

dynamic environments, the trajectory estimated by our

system closely matches the ground truth trajectory. Therefore,

the proposed system demonstrates superior tracking and

localization performance. **g Letters**
dynamic environments, the trajectory estimates
system closely matches the ground truth trajectory.
the proposed system demonstrates superior trac
localization performance.
To further validate the advancements o

Letters

namic environments, the trajectory estimated by our

stem closely matches the ground truth trajectory. Therefore,

a proposed system demonstrates superior tracking and

calization performance.

To further validate **g Letters**
dynamic environments, the trajectory estimated by our
system closely matches the ground truth trajectory. Therefore,
the proposed system demonstrates superior tracking and
localization performance.
To further v **g Letters**
dynamic environments, the trajectory estimated by our
system closely matches the ground truth trajectory. Therefore,
the proposed system demonstrates superior tracking and
localization performance.
To further v **g Letters**
dynamic environments, the trajectory estimated by our
system closely matches the ground truth trajectory. Therefore,
the proposed system demonstrates superior tracking and
localization performance.
To further v **g Letters**
dynamic environments, the trajectory estimated by our
system closely matches the ground truth trajectory. Therefore,
the proposed system demonstrates superior tracking and
localization performance.
To further v dynamic environments, the trajectory estimated by our
system closely matches the ground truth trajectory. Therefore,
the proposed system demonstrates superior tracking and
localization performance.
To further validate the dynamic environments, the trajectory estimated by our
system closely matches the ground truth trajectory. Therefore,
the proposed system demonstrates superior tracking and
localization performance.
To further validate the dynamic environments, the trajectory estimated by our system closely matches the ground truth trajectory. Therefore, the proposed system demonstrates superior tracking and localization performance. To further validate the dynamic environments, the trajectory estimated by our system closely matches the ground truth trajectory. Therefore, the proposed system demonstrates superior tracking and localization performance.
To further validate the system closely matches the ground truth trajectory. Therefore,
the proposed system demonstrates superior tracking and
localization performance.
To further validate the advancements of our system, we
compared it with recent e proposed system demonstrates superior tracking and
calization performance.
To further validate the advancements of our system, we
mpared it with recently published SLAM algorithms, such
RDS-SLAM and AHY-SLAM. As shown in localization performance.

To further validate the advancements of our system, we

compared it with recently published SLAM algorithms, such

as RDS-SLAM and AHY-SLAM. As shown in Table IV, our

system exhibits significant To further validate the advancements of our system, we compared it with recently published SLAM algorithms, such as RDS-SLAM and AHY-SLAM. As shown in Table IV, our system exhibits significantly lower RMSE and S.D. across compared it with recently published SLAM algorithms, such
as RDS-SLAM and AHY-SLAM. As shown in Table IV, our
system exhibits significantly lower RMSE and S.D. across
the five sequences compared to these algorithms,
demons

as RDS-SLAM and AHY-SLAM. As shown in Table IV, our system exhibits significantly lower RMSE and S.D. across the five sequences compared to these algorithms, demonstrating its superior performance and advanced capabilities system exhibits significantly lower RMSE and S.D. across
the five sequences compared to these algorithms,
demonstrating its superior performance and advanced
capabilities. As a crucial component of mobile robotics,
real-ti the five sequences compared to these algorithms,
demonstrating its superior performance and advanced
capabilities. As a crucial component of mobile robotics,
real-time capability is essential for SLAM systems. Hence,
we al demonstrating its superior performance and advanced capabilities. As a crucial component of mobile robotics, real-time capability is essential for SLAM systems. Hence, we also measured the runtime of the SLAM systems. The capabilities. As a crucial component of mobile
real-time capability is essential for SLAM systems
we also measured the runtime of the SLAM system
runtime of each SLAM system is illustrated in Table
As indicated in Table V, moval process inadvertently As indicated in Table V, we can see that our s
feature points. exhibits better real-time performance compare
te the estimated trajectories and RDS-SLAM and AHY-SLAM, averaging 75ms per t
orbserv

Sequence	ORB-SLAM3		Ours		Improvement/%	
	RMSE	S.D.	RMSE	S.D.	RMSE	S.D.
fr3 walking xyz	0.7126	0.3672	0.0163	0.0086	97.71	97.65
fr3 walking half	0.3942	0.2854	0.0207	0.0158	94.47	94.46
fr3 walking static	0.4001	0.0640	0.0072	0.0038	98.2	94.06
fr3 walking rpy	0.4223	0.3321	0.0443	0.0367	89.52	88.96
fr3_sitting_static	0.0075	0.0044	0.0078	0.0045	-4.3	-3.2
			TABLE II. Results of metric rotational drift (RPE)			
Sequence	ORB-SLAM3		Ours		Improvement/%	
	RMSE	S.D.	RMSE	S.D.	RMSE	S.D.

Sequence	ORB-SLAM3		Ours			Improvement/%	
	RMSE	S.D.	RMSE	S.D.	RMSE	S.D.	
fr3 walking xyz	6.2841	3.4841	0.2928	0.1972	95.34	94.34	
fr3 walking half	6.8735	5.4233	0.4728	0.4598	93.12	91.52	
fr3 walking static	2.7134	2.2098	0.2374	0.2134	91.25	90.34	
fr3_walking_rpy	5.3785	3.4785	0.7142	0.5725	86.72	83.54	
fr3 sitting static	0.1687	0.0087	0.1781	0.0094	-5.6	-8.2	
TABLE III. Results of metric translational drift (RPE)							
Sequence	ORB-SLAM3		Ours		Improvement/%		
	RMSE	S.D.	RMSE	S.D.	RMSE	S.D.	

TABLE IV. Comparison of absolute trajectory errors between Ours and other similar SLAM methods. (ATE				

Systems

ORB-SALM3

Ours

Average Processi

ORB-SALM3

Ours

AFIY-SLAM

RDS-SLAM

RDS-SLAM

RDS-SLAM

RDS-SLAM

This paper introduces a real-time semantic SLAM system dfp. Experimental

introduce an image enhancement modul network to deblur camera-captured images, thereby

network to define the state of the state enhancing the quality of image frames. Subsequently, we be enhancing the dying of the same the same the same of the same the same of the s Formation of the detection of the detection of the detection

integrate the outputs from

This paper introduces a real-time semantic SLAM system

This paper introduces a real-time semantic SLAM system

integrating an enhan The system of the system. We integrate the outputs from

introduce an enhanced YOLOv7 network. Ini RDS-SLAM

We integrate the outputs

We integrate the outputs

We integrate the outputs

integrating an enhanced YOLOv7 network. Initially, we

introduce an image enhancement module into the some existing SLAM alg

ORB-SLAM V. CONCLUSION

We integrate the outpublic constrain

introduces a real-time semantic SLAM system

dfp. Experimental rest

introduce an image enhancement module into the some existing SLAM introduce

on introduce an image e V. CONCLUSION

We integrate the outputs from with epipolar constraints in ord

integrating an enhanced YOLOv7 network. Initially, we achieves over 90% improvement

introduce an image enhancement module into the some existi V. CONCLUSION

With epipolar constraints

integrating an enhanced YOLOv7 network. Initially, we

introduce an image enhancement module into the some existing SLAM

introduce an image enhancement module into the some existi This paper introduces a real-time semantic SLAM system dfp. Experimental results show integrating an enhanced YOLOv7 network. Initially, we achieves over 90% improvement incroduce an image enhancement module into the some integrating an enhanced YOLOv7 network. Initially, we achieves over 90% improveme
introduce an image enhancement module into the some existing SLAM algorithn
ORB-SLAM3 framework, leveraging the DeblurGANv2 the enhanced YOL introduce an image enhancement module into the some existing SLAM

ORB-SLAM3 framework, leveraging the DeblurGANv2 the enhanced YOLC

network to deblur camera-captured images, thereby precision while senhancing the quality

actives over the control of the control of the comparison of something and a meaning SLAM algorithms. The processing Time Per Frame(ms)

for the control of the contrast of the difp. Experimental results show Average Processing Time Per Frame(ms)

62

75

75

82

We integrate the outputs from the object detection process

with epipolar constraints in order to eliminate dynamic the

dfp. Experimental results show that our propos **Example 18 and 18** $\frac{0.2}{75}$
 $\frac{103}{82}$

We integrate the outputs from the object detection

with epipolar constraints in order to eliminate dy

dfp. Experimental results show that our propos

achieves over 90% improvement in accuracy $\frac{82}{100}$
 $\frac{82}{100}$
 $\frac{82}{1000}$
 $\frac{82}{1000}$
 $\frac{82}{1000}$

Experimental results show that our proposed system

hieves over 90% improvement in accuracy compared to

me existing SLAM algorithms. Furthermore, b ¹⁰³
82
82
82
82
We integrate the outputs from the object detection process
with epipolar constraints in order to eliminate dynamic the
dfp. Experimental results show that our proposed system
achieves over 90% improvement We integrate the outputs from the object detection process
with epipolar constraints in order to eliminate dynamic the
dfp. Experimental results show that our proposed system
achieves over 90% improvement in accuracy comp We integrate the outputs from the object detection process
with epipolar constraints in order to eliminate dynamic the
dfp. Experimental results show that our proposed system
achieves over 90% improvement in accuracy compa

We integrate the outputs from the object detection process
with epipolar constraints in order to eliminate dynamic the
dfp. Experimental results show that our proposed system
achieves over 90% improvement in accuracy compa with epipolar constraints in order to eliminate dynamic the dfp. Experimental results show that our proposed system achieves over 90% improvement in accuracy compared to some existing SLAM algorithms. Furthermore, by utili dfp. Experimental results show that our proposed system
achieves over 90% improvement in accuracy compared to
some existing SLAM algorithms. Furthermore, by utilizing
the enhanced YOLOv7 algorithm, our system enhances
prec achieves over 90% improvement in accuracy compared to
some existing SLAM algorithms. Furthermore, by utilizing
the enhanced YOLOv7 algorithm, our system enhances
precision while simultaneously preserving real-time
operatio some existing SLAM algorithms. Furthermore, by utilizing
the enhanced YOLOv7 algorithm, our system enhances
precision while simultaneously preserving real-time
operational efficiency.
Although the system proposed in this p

Engineering Letters

more rational methods for dynamic feature point removal,

such as employing advanced selection algorithms.

Additionally, we will investigate techniques to enhance the "YOLOV?: Trainable bag

system' **Engineering Letters**

more rational methods for dynamic feature point removal,

such as employing advanced selection algorithms.

Additionally, we will investigate techniques to enhance the "YOLOv7: Trainable laystem's ab **Engineering Letters**

more rational methods for dynamic feature point removal,

such as employing advanced selection algorithms.

Additionally, we will investigate techniques to enhance the

system's ability to detect a h **Engineering Letters**

such as employing advanced selection algorithms.

System's ability to detect a high volume of fast-moving

detection network to enhance its performance.

PETERENCES

PETERENCES

PETERENCES

PETERENCE **Engineering Letters**

more rational methods for dynamic feature point removal,

such as employing advanced selection algorithms.

Additionally, we will investigate techniques to enhance the

system's ability to detect a h **Engineering Lett**

more rational methods for dynamic feature point removal,

such as employing advanced selection algorithms.

Additionally, we will investigate techniques to enhance the

system's ability to detect a high more rational methods for dynamic feature point removal,

such as employing advanced selection algorithms.

Additionally, we will investigate techniques to enhance the

system's ability to detect a high volume of fast-movi estimational methods for dynamic feature point removal,

information (ICETCI). IEE

itionally, we will investigate techniques to enhance the

"YOLOV?: Trainable bag

entime object to the tect of the tect of the improving t Expectional methods for dynamic feature point removal.

as employing advanced selection algorithms

itionally, we will investigate techniques to enhance the

em's ability to detect a high volume of fast-moving

cts, such a such as employing advanced selection algorithms. If the method (CETCI). IE Additionally, we will investigate techniques to enhance the myOLOV? Trainable bags and the system's ability to detect a high volume of fast-moving as employing advanced selection algorithms.

itionally, we will investigate techniques to enhance the

em's ability to detect a high volume of fast-moving

tets, such as further improving the structure of the

cition netw Additionally, we will investigate techniques to enhance the
system's ability to detect a high volume of fast-moving
objects, such as further improving the structure of the
detection network to enhance its performance.

The 29 External inertial navigation system. The Computer Vision and Computer Vision network to enhance its performance.

EFERENCES

Smith, Randall C., and Peter Cheeseman. "On the representation and again." Freedotics Research

REFERENCES

-
-
-
- cts, such as further improving the structure

ction network to enhance its performance.

REFERENCES

Smith, Randall C., and Peter Cheeseman. "On the repres

estimation of spatial uncertainty." The International

Robotics R EXEREMENCES

26 Liu, Wei, et al. "Ssd: S

26 detection network to enhance its performance.

26 Vision-ECCV 2016: 14

26 Vision-ECCV 2016: 14

26 Netherlands, October 11-

27 Ding, **aohan, et al. "Robust Schoten and estima CHOI THEVACK COM THE CONTROLL CON REFERENCES

Smith, Randall C., and Peter Cheeseman. "On the representation and Publishing

estimation of spatial uncertainty." The International Journal of again." Proceedings

Robotics Research 5.4 (1986): 56-68.

Chen, W 12462-12471. [1] Smith, Randall C., and Peter Cheeseman. "On the representation and again." Proceedings of spatial uncertainty." The International Journal of vision and Pattern Recogness Research 5.4 (1986): 56-68.

[23] Chen, Weifeng Smuth, Randal C., and Peter Cheeseman. "On the representation and again." Proceedings of "

Robotics Research 5.4 (1986): 56-68.

Robotics Research 5.4 (1986): 56-68.

Chen, Weifeng, et al. "An overview on visual slam: F estimation of spatial uncertainty." The International Journal of Vision

Robotics Research 5.4 (1986): 56-68.

Chen, Weifeng, et al. "An overview on visual slam: From tradition to module

Seok, Hochang, and Jongwoo Lim. "R Robotics Research 5.4 (1986): 56-68.

[27] Chen, Weifreig, et al. "An overview on visual slam: From tradition to module for convertions

[3] Seok, Hochang, and Jongwoo Lim. "ROVINS: Robust omnidirectional

[31] Seok, Hocha Chen, Weifeng, et al. "An overview on visual siam: From tradition to

scock, Hochang, and Jongwoo Lim. "ROVINS: Robust omnidirectional

Seok, Hochang, and Jongwoo Lim. "ROVINS: Robust omnidirectional

129] Kundu, Abhijit, semantic." Remote Sensing 14.13 (2022): 3010. Con M

Senok, Hochang, and Jongwoo Lim. "ROVINS: Robust omnidirectional [29] Kuno

visual inertial navigation system." IEEE Robotics and Automation [29] Kun

Letters 5.4 (2020) [7] Seok, Hochang, and Jongwoo Lim. "ROVINS: Robust omindirectional [29] Kundu, Abhijit, K. I

visual inertial navigation system." IEEE Robotics and Automation with the United States: $\frac{1}{2}$ Letters 5.4 (2020): 6225-623 visual inertial navigation system." IEEE Robotics and Automation

Letters 5.4 (2020): 6225-6232.

Letters 5.4 (2020): 6225-6232.

This, Chaoyang, et al. "Robust vision-aided inertial navigation system conference on Intelli Letters 5.4 (2020): 6225-6232.

Zhai, Chaoyang, et al. "Robust vision-aided inertial navigation system

for protection against ego-motion uncertainty of unmanned ground

vehicle." IEEE Transactions on Industrial Electronic [4] Zhai, Chaoyang, et al. "Robust vision-aided inertial navigation system Conference on Intelligent of protection against ego-motion uncertainty of umaned ground [30] Sturm, Jürgen, et al. "Monocular visual-inertial state
-
- Li, Peiliang, et al. "Monocular visual-inertial state estim
mobile augmented reality." 2017 IEEE International Sympo
Mixed and Augmented Reality (ISMAR). IEEE, 2017.
Gupta, Abhishek, and Xavier Fernando. "Simultaneous loo

- for protecton against ego-motion uncertainty of unmanned ground [30] Sturm, Jürgen, et vehicle." IEEE Transactions on Industrial Electronics 68.12 (2020): SLAM systems."

12462-12471.

Li, Peiliang, et al. "Monocular visu vehice." IEEE Transactions on Industrial Electronics 68.12 (2020):

12462-12471.

12462-12471. Peliang, et al. "Monocular visual-inertial state estimation for

mobile augmented reality." 2017 IEEE International Symposium o 12462-12471.

i. Pelilang, et al. "Monocular visual-inertial state estimation for

Li, Pelilang, et al. "Monocular visual-inertial state estimation for

mobile augmented Reality (ISMAR). IEEE, 2017.

Gupta, Abhishek, and X mobile augmented reality." 2017 IEEE International Symposium on

Mixed and Augmented Reality (ISMAR). IEEE, 2017.

[6] Gupta, Abhishek, and Xavier Fernando. "Simultaneous localization

and map** (slam) and data fusion in u Mixed and Augmented Reality (ISMAR). IEEE, 2017.

Gupta, Abhishek, and Xavier Fermando. "Simultaneous localization

and map** (slam) and data fusion in unmanned acrial vehicles: Recent

advances and challenges." Drones 6.4 Gupta, Abhishek, and Xavier Fernando. "Simultaneous localization
and map*** (slam) and data faision in ummaned aerial vehicles: Recent
advances and challenges." Drones 6.4 (2022): 85.
Yin, Hesheng, et al. "Dynam-SLAM: An a and map** (slam) and data fusion in unmanned aerial vehicles: Recent

avances and challenges." Drones 6.4 (2022): 85.

[7] Yin, Hesheng, et al. "Dynam-SLAM: An accurate, robust stereo

visual-inertial SLAM method in dynam advances and challenges." Drones 6.4 (2022): 85.

Yin, Hesheng, et al. "Dynam-SLAM: An accurate, robust stereo

visual-inertial SLAM method in dynamic environments." IEEE

Transactions on Robotics 39.1 (2022): 289-308.

Ni
-
-
-
- 4076-4083.
[12] Yuan, Xun, and Song Chen. "Sad-slam: A visual slam based on
- visual-inertial SLAM method in dynamic environments." IEEE

Transactions on Robotics 39.1 (2022): 289-308.

[8] Nistér, David. "Preemptive RANSAC for live structure and motion

estimation." Machine Vision and Applications Transactions on Robotics 39.1 (2022): 289-308.

Nistér, David. "Preemptive RANSAC for live structure and motion

estimation." Machine Vision and Applications 16.5 (2005): 321-329.

Campos, Carlos, et al. "Orb-slam3: An acc
- Nister, David. "Preemptive RANSAC for live structure and motion
estimation." Machine Vision and Applications 16.5 (2005): 321-329.
Campos, Carlos, et al. "Orb-slam3: An accurate open-source library for
visual, visual-inert estimation." Machine Vision and Applications 16.5 (2005): 321-329.

[9] Campos, Carlos, et al. "Ob-slam3: An accurate open-source library for

visual, visual-inertial, and multimap slam." IEEE Transactions on

Robotics 37. Campos, Carlos, et al. "Orb-slam3: An accurate open-source library for
visual, visual-inertial, and multimap slam." IEEE Transactions on
Robotics 37.6 (2021): 1874-1890.
Yu, Chao, et al. "DS-SLAM: A semantic visual SLAM to visual, visual–inertial, and multimap slam." IEEE Transactions on

Robotics 37.6 (2021): I874-1890.

Yu, Chao, et al. "DS-SLAM: A semantic visual SLAM towards

dynamic environments." 2018 IEEE/RSJ International Conference Robotics 37.6 (2021): 1874-1890.

Yu, Chao, et al. "DS-SLAM: A semantic visual SLAM tow

dynamic environments." 2018 IEEE/RSJ International Conference

Intelligent Robots and Systems (IROS). IEEE, 2018.

Bescos, Berta, et [10] Yu, Chao, et al. "DS-SLAM: A semantic visual SLAM towards
dynamic environments." 2018 IEEERSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2018.
[11] Bescos, Berta, et al. "DynaSLAM: Tracki dynamic environments." 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2018.

Bescos, Berta, et al. "DynaSLAM: Tracking, map**, and inpainting in

dynamic scenes." IEEE Robotics and A Intelligent Robots and Systems (IROS). IEEE, 2018.

[11] Bescos, Berta, et al. "DynaSLAM: Tracking, map^{**}, and inpainting in

dynamic scenes." IEEE Robotics and Automation Letters 3.4 (2018):

4076-4083.

[12] Yuan, Xun, Bescos, Berta, et al. "DynaSLAM: Tracking, map**, and inpainting in
dynamic scenes." IEEE Robotics and Automation Letters 3.4 (2018):
4076-4083.
Yuan, Xun, and Song Chen. "Sad-slam: A visual slam based on
semantic and dept dynamic scenes." IEEE Robotics and Automation Letters 3.4 (2018):
4076-4083.
Yuan, Xun, and Song Chen. "Sad-slam: A visual slam based on
semantic and depth information." 2020 IEEE/RSJ International
Conference on Intelligen 4076-4083.

[12] Yuan, Xun, and Song Chen. "Sad-slam: A visual slam based on

semantic and depth information." 2020 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2020.

[13] Badrinaraya Yuan, Xun, and Song Chen. "Sad-slam: A visual slam based on

Scenference on Intelligent Robots and Systems (IROS). IEEE, 2020.

Badrinarayanan, Vijay, Alex Kendall, and Roberto Cipolla. "Segnet: A

deep convolutional encod semantic and depth information." 2020 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2020.

[13] Badrinarayanan, Vijay, Alex Kendall, and Roberto Cipolla. "Segnet: A

deep convolutional Conference on Intelligent Robots and Systems (IROS). IEEE, 2020.

Badrinaryanan, Vijay, Alex Kendall, and Roberto Cipolla. "Segnet: A

deep convolutional encoder-decoder architecture for image

segmentation." IEEE Transact
-
- eep convolutional encode-accooler attenties for lingual
segmentation." IEEE Transactions on Pattern Analysis and Machine
Intelligence 39.12 (2017): 2481-2495.
[14] He, Kaiming, et al. "Mask r-cnn." Proceedings of The IEEE
 Segmentation. EEE Transactions on Fattern Antarysis and Machine
Intelligence 39.12 (2017): 2481-2495.
He, Kaiming, et al. "Mask r-cnn." Proceedings of The IEEE
International Conference on Computer Vision. 2017.
Kupyn, Ores [19] Redmon, Joseph, et al. "You only look once: Unified, real-time object Tre, Kamillig, et al. "Massi 1-coint" Froceedings of The EEE Conference on Computer Vision. 2017.

Kupyn, Orest, et al. "Deblurgan-v2: Deblurring (orders-of-magnitude)

faster and better." Proceedings of The IEEE/CVF Inter International Contentere off Computer Vision. 2017.

Kupyn, Orest, et al. "Deblurgan-V2: Deblurring (orders-of-magn

faster and better." Proceedings of The IEEE/CVF Interna

Conference on Computer Vision. 2019.

Rublee, Et
-
-
- (2018).
[18] Girshick, Ross. "Fast r-cnn." Proceedings of The IEEE International
-
- [20] Zhong, Fangwei, et al. "Detect-SLAM: Making object detection and asset and betate. Toceecungs of The EEEPC v^r mematorial Conference on Computer Vision. 2019.

Rublee, Ethan, et al. "ORB: An efficient alternative to SIFT or SURF." 2011 International conference on computer vision. leee,
- Collecter of Computer Vision. 2013.

Rublee, Ethan, et al. "ORB: An efficient alternative to SIFT or SURF." 2011 International conference on computer vision. Icee, 2011.

Voulodimos, Athanasios, et al. "Deep learning for c [21] CONGREGITER THE COLUTE CONGREGITED TO SURF. "2011 International conference on computer vision. Ice, 2011.

[17] Voulodimos, Athanasios, et al. "Deep learning for computer vision: A

brief review." Computational Intell SOKET 2011 International conference on compluer vision: Leee, 2011.

Voulodimos, Athanasios, et al. "Deep learning for computer vision: A

brief review." Computational Intelligence and Neuroscience 2018

(2018).

Girshick, volucions, Anianasios, et al. Deep learning for computer vision: A

brief review." Computational Intelligence and Neuroscience 2018

(2018).

Girshick, Ross. "Fast r-cnn." Proceedings of The IEEE International

Conference 2019.

[22] Kupyn, Orest, et al. "Deblurgan: Blind motion deblurring using (2018).

[18] Grishick, Ross. "Fast r-cnn." Proceedings of The IEEE International

[19] Redmon, Joseph, et al. "You only look once: Unified, real-time object

detection." Proceedings of The IEEE Conference on Computer Visi Girshick, Ross. "Fast r-cnn." Proceedings of The IEEE International
Conference on Computer Vision. 2015.
Redmon, Joseph, et al. "You only look once: Unified, real-time object
detection." Proceedings of The IEEE Conference Conference on Computer Vision. 2015.

Redmon, Joseph, et al. "You only look once: Unified, real-time object

detection." Proceedings of The IEEE Conference on Computer Vision

and Pattern Recognition. 2016.

Zhong, Fangwei [19] Redmon, Joseph, et al. "You only look once: Unified, real-time object
dectrion." Proceedings of The IEEE Conference on Computer Vision
and Pattern Recognition. 2016.
[20] Zhong, Fangwei, et al. "Detect-SLAM: Making ob detection." Proceedings of The IEEE Conference on Computer Vision
and Pattern Recognition. 2016.

Zhong, Fangwei, et al. "Detect-SLAM: Making object detection and

SLAM mutually beneficial." 2018 IEEE Winter Conference on
 and Pattern Recognition. 2016.

Zhong, Fangwei, et al. "Detect-SLAM: Making object detection and

SLAM mutually beneficial." 2018 IEEE Winter Conference on

Applications of Computer Vision (WACV). IEEE, 2018.

Schorghuber, [20] Zhong, Fangwei, et al. "Detect-SLAM: Making object detection and SLAM mutually beneficial." 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2018.

[21] Schorghuber, Matthias, et al. "SLAMA SLAM mutually beneficial." 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2018.
Schorghuber, Matthias, et al. "SLAMANTIC-leveraging semantics to improve VSLAM in dynamic environments." Proceed
-
-
-

- **Exercise Scheme Conference on Electronic Technology, Communication and Information (ICETCI). IEEE, 2021.**
 Wang, Chien-Yao, Alexey Bochkovskiy, and Hong-Yuan Mark Liao.
 WOLOV7: Trainable bag-of-freebies sets new state Example 18 Example 10

Conference on Electronic Technology, Communication an

Information (ICETCI). IEEE, 2021.

Wang, Chien-Yao, Alexey Bochkovskiy, and Hong-Yuan Mark Liae

"YOLOv7: Trainable bag-of-freebies sets new s **Exercise 125**
 Exercise Conference on Electronic Technology, Communication and Information (ICETCI). IEEE, 2021.

[25] Wang, Chien-Yao, Alexey Bochkovskiy, and Hong-Yuan Mark Liao.

"YOLOv7: Trainable bag-of-freebies se **Exercise Setters**

Conference on Electronic Technology, Communication and

Information (ICETCI). IEEE, 2021.

Wang, Chien-Yao, Alexey Bochkovskiy, and Hong-Yuan Mark Liao.

"YOLOv7: Trainable bag-of-freebies sets new stat **Exercise Conference on Electronic Technology, Communication and Information (ICETCI). IEEE, 2021.**
Wang, Chien-Yao, Alexey Bochkovskiy, and Hong-Yuan Mark Liao.
"YOLOv7: Trainable bag-of-freebies sets new state-of-the-art **Example 18 Conference computer Computer**

Conference on Electronic Technology, Communication and

Information (ICETCI). IEEE, 2021.

Wang, Chien-Yao, Alexey Bochkovskiy, and Hong-Yuan Mark Liao.

"YOLOv7: Trainable bag-of
- **Exercise Shot Manuson**
 Exercise Conference on Electronic Technology, Communication and

Iformation (ICETCI). IEEE, 2021.

[25] Wang, Chien-Yao, Alexey Bochkovskiy, and Hong-Yuan Mark Liao.

"YOLOv7: Trainable bag-of-fr **Exercise Conference Conference** on Electronic Technology, Communication and Information (ICETCI). IEEE, 2021.

Wang, Chien-Yao, Alexey Bochkovskiy, and Hong-Yuan Mark Liao.

"YOLOv7: Trainable bag-of-freebies sets new sta **Etters**

Conference on Electronic Technology, Communication and

Information (ICETCI). IEEE, 2021.

Wang, Chien-Yao, Alexey Bochkovskiy, and Hong-Yuan Mark Liao.

"YOLOv7: Trainable bag-of-freebies sets new state-of-the-a Conference on Electronic Technology, Communication

Information (ICETCI). IEEE, 2021.

Wang, Chien-Yao, Alexey Bochkovskiy, and Hong-Yuan Mark

"YOLOv7: Trainable bag-of-freebies sets new state-of-the-a

real-time object d Conference on Electronic Technology, Communication and

Information (ICETCI). IEEE, 2021.

[25] Wang, Chien-Yao, Alexey Bochkovskiy, and Hong-Yuan Mark Liao.

"YOLOV7: Trainable bag-of-freebies sets new state-of-the-art fo Conference on Electronic Technology, Communication and Information (ICETCI). IEEE, 2021.

Wang, Chien-Yao, Alexey Bochkovskiy, and Hong-Yuan Mark Liao.

"YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for

rea Conference on Electronic Technology, Communication and
Information (ICETCI). IEEE, 2021.
Wang, Chien-Yao, Alexey Bochkovskiy, and Hong-Yuan Mark Liao.
"YOLOv7: Trainable bag-of-frecbies sets new state-of-the-art for
real-t Conference on Electronic Technology, Communication and

Information (ICETCI). IEEE, 2021.

Wang, Chien-Yao, Alexey Bochkovskiy, and Hong-Yuan Mark Liao.

"YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for

re Information (ICETCI). IEEE, 2021.

Wang, Chien-Yao, Alexey Bochkovskiy, and Hong-Yuan Mark Liao.

"YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for

real-time object detectors." Proceedings of The IEEE/CVF C Wang, Chien-Yao, Alexey Bochkovskiy, and Hong-Yuan Mark Liao
"YOLOv7: Trainable bag-of-freebies sets new state-of-the-art fo
real-time object detectors." Proceedings of The IEEE/CVF Conference
on Computer Vision and Patter "YOLOv7: Trannable bag-of-freebies sets new state-of-the-art for
read time object detectors." Proceedings of The IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2023.
[26] Liu, Wei, et al. "Ssd: Single shot real-time object detectors." Proceedings of The IEEE/CVF Conference

on Computer Vision and Pattern Recognition. 2023.

Liu, Wei, et al. "Ssd: Single shot multibox detector." Computer

Vision-ECCV 2016: 14th European Confe on Computer Vision and Pattern Recognition. 2023.

Liu, Wei, et al. "Ssd: Single shot multibox detector." Computer

Vision-ECCV 2016: 14th European Conference, Amsterdam, The

Netherlands, October 11–14, 2016, Proceedings,
-
-
- Liu, Wei, et al. "Ssd: Single shot multibox detector." Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14. Springer International Publishing, 2016. Vision-ECCV 2016: 14th European Conterence, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part I 14. Springer
International Publishing, 2016.
The International Publishing, 2016.
The IEEE/CVF Conference on C Netherlands, October 11–14, 2016, Proceedings, Part I 14. Springer International Publishing, 2016.
Ding, **aohan, et al. "Repvyg: Making vgg-style convnets great
again." Proceedings of The IEEE/CVF Conference on Computer
V International Publishing, 2016.

Ding, **aohan, et al. "Repygg: Making vgg-style convnets great

again." Proceedings of The IEEE/CVF Conference on Computer

Vision and Pattern Recognition. 2021.

Yang, Lingxiao, et al. "Si
-