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Abstract—This paper proposes a semantic SLAM integrated

with an enhanced YOLOv7 target detection algorithm. To
address the issue of image blurring caused by robot movement
and camera shake, we have incorporated an image
enhancement module before the tracking thread. Consequently,
the resulting images are more clearer. In the feature extraction
stage, we introduce adaptive thresholds to improve the system's
capability in feature point extraction. To minimize the influence
of dynamic objects on this system, we employ an enhanced
YOLOv7 algorithm to detect dynamic targets. Then, we
integrate it with epipolar constraint to eliminate dynamic
feature points. Finally, We evaluated our system with five
sequences taken from the TUM dataset, and compared with
ORB-SLAM3, our system improves more than 91% in accuracy,
up to 98%. Moreover, compared to similar semantic SLAM
systems, our system offers improved accuracy as well as
enhanced real-time performance.

Index Terms—semantic SLAM, image enhancement,
adaptive thresholds, YOLOv7, epipolar constraint

I. INTRODUCTION
IMULTANEOUS Localization and Mapping (SLAM)
refers to a process where a robot, without any prior

information, simultaneously localizes itself and constructs a
map of its surrounding area[1]. Based on the types of sensors
used, researchers divide SLAM into Laser SLAM (LS) and
Visual SLAM (VS). Among them, VS has the benefits of
reduced expenses and access to obtain more data from
surroundings, which can give mobile robots stronger
environmental awareness [2]. So, vision-based simultaneous
localization and map building techniques have been widely
studied and applied to robot navigation [3], unmanned
driving [4] and virtual reality [5].
In practical applications, visual SLAM needs to be
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real-time and robust. Traditional visual SLAM primarily
relies on understanding the environment through geometric
features of images [6], which has high real-time performance
because it only focuses on geometric features in the
environment. Traditional VS relies on the assumption of a
stationary surroundings. But it doesn’t hold true in real-world
scenarios where moving entities, such as walkers and
automobiles, are unavoidably present. Dynamic
environments generate numerous incorrect data associations
[7], leading to a reduction in the accuracy of VS systems.
Consequently, traditional VS systems exhibit lower
robustness. Furthermore, traditional visual SLAM lacks the
capability to comprehend the environment at a high level and
fails to meet the demands for human-computer interaction in
the current era of intelligent technology. To address the
limitations of traditional visual SLAM, visual SLAM
designed for dynamic environments has emerged.
In dynamic environments, the primary objective of VS is

to minimize the influence of moving entities on the SLAM
system by excluding feature points associated with these
objects. This challenge is addressed through two distinct
approaches: geometric-based dynamic visual SLAM and
deep learning-based dynamic visual SLAM, each utilizing
specific techniques designed for this purpose.
Geometry-based dynamic visual SLAM employs geometric
information of the environment to eliminate dynamic features,
and a prevalent approach is the maximum consistency
scheme, such as the Random Sample Consensus Algorithm
(RANSAC [8]). In addition, many visual SALM systems use
multi-sensor fusion to detect dynamic targets in the
environment, such as ORB-SLAM3 [9]. However, these
methods are effective only when dynamic objects are few,
and they fail to capture high-level information about the
environment, resulting in an insufficient understanding of the
surroundings. Dynamic visual SLAM based on deep learning,
also known as semantic SLAM, is capable of acquiring both
geometric information about unfamiliar environments and
the motion states of robots. Moreover, it can detect and
recognize targets in the surroundings, allowing for the
filtering out of dynamic feature points (dfp). This capability
enables the robot to enhance its comprehension of its
surroundings.Moreover it also allows robots to function
effectively in more complex environments.
Although many semantic SLAM methods perform well in

dynamic environments, they still suffer from certain issues.
Firstly, many semantic SLAM methods overlook the problem
of image blurring caused by camera shake during robot
movement, resulting in insufficient extraction of both
geometric and semantic information by the system. Secondly,
approaches utilizing deep learning methods, such as semantic
segmentation and target detection exhibit limitations. Some
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approaches only remove feature points by relying on the
results of semantic segmentation or object detection, as
demonstrated by methods such as DS-SLAM [10],
DynaSLAM [11], and SaD-SLAM [12]. This approach can
lead to two main issues: misidentification of stationary
feature points as moving, which reduces the number of useful
features and impairs position estimation capability; and
incomplete removal of some dynamic objects, which
compromises the precision and robustness of this system. In
addition, these methods use segmentation models such as
SegNet [13], Mask R-CNN [14], etc. Although these models
have high accuracy, they are more complex in structure and
take longer to process the data, which fails to meet the criteria
for real-time performance. Lastly, the conventional ORB
(Oriented FAST and Rotated BRIEF) feature extraction
method [15] employs a fixed threshold that is sensitive to
changes in environmental lighting conditions. This
dependency can lead to challenges such as failures in feature
point extraction and redundancy in local feature points.
To address the aforementioned challenges in SLAM

systems, we have developed a semantic SLAM system
utilizing the ORB-SLAM3 framework, which ensures both
efficiency and reliability in complex dynamic environments.
Firstly, to tackle the problem of image blurriness resulting
from camera shake and rapid motion of dynamic objects, we
propose the implementation of an image enhancement
module. This module utilizes the DeblurGANv2 network [16]
to process blurry images, thereby improving image quality
and facilitating the subsequent modules' operation.
Furthermore, to alleviate the effects of dynamic entities on
the SLAM system, we incorporate a parallel object detection
thread within the ORB-SLAM3 framework, utilizing
epipolar constraints and enhanced YOLOv7 to eliminate the
dfp. In the object detection threads, we employ the
lightweight YOLOv7 object detection network to derive
semantic details from images. Simultaneously, we utilize this
thread to identify the location of the target within the image.
Additionally, to address the low precision issue of the
YOLOv7 network, we integrate the SimAM attention
mechanism into its feature extraction process. Lastly, we
enhance the traditional ORB feature extraction method by
adaptively adjusting the detection threshold of FAST corners
based on the grayscale values of different regions in the
image. A comparison with conventional ORB feature
extraction, which uses a fixed threshold, demonstrates that
our approach produces a greater number of useful feature
points with a more uniform distribution. This enhancement
ultimately increases the accuracy of subsequent pose
estimation tasks.
The following parts of this article are structured in the

manner outlined below. In Section II, we present some
semantic SLAMs for dynamic environments, summarizing
their results and shortcomings. In Section III, we elaborate on
the system architecture. In Section IV, we perform
experiments utilizing the TUM dataset and analyze the
experimental results. And in Section V, we summarize the
work in this paper.

II. RELATEDWORK

Traditional VS systems are predicated on a quiescent

hypothesis, leading to poor localization and mapping
performance in complex moving surroundings. In order to
enhance the robustness of visual SLAM systems and enable
better human-machine interaction, researchers have proposed
Semantic SLAM. This approach utilizes deep learning-based
object detection and semantic segmentation algorithms to
remove dynamic regions within images. Subsequently, pose
estimation and the development of maps that incorporate
semantic information rely solely on sfp.
Object detection plays a crucial role in the domain of

computer vision [17], aimed at localizing and classifying
objects. It involves locating desired objects within given
images or videos, marking their positions with bounding
boxes, and determining their categories. With the progression
of deep learning methodologies, numerous deep
learning-based object detection algorithms have emerged,
achieving impressive results in this field. Examples include
Fast R-CNN [18] and the YOLO [19] series of algorithms.
Researchers have incorporated object detection algorithms

into SLAM systems to mitigate the impact of dynamic
entities on the performance of these systems. In 2018, Zhong
F et al. proposed Detect-SLAM [20], that integrates SLAM
with deep neural network (DNN)-based object detectors.
This integration enhances the ability of robots to perform
tasks effectively and reliably in unfamiliar and dynamic
environments. Detect-SLAM combines SLAM with
DNN-based detectors, simultaneously accomplishing three
tasks: enhancing SLAM robustness in dynamic environments,
improving object detection performance, and constructing
semantic maps. In highly dynamic scenes, the trajectory
estimated by the Detect-SLAM system closely approximates
the true trajectory. However, compared to ORB-SLAM2,
Detect-SLAM fails to yield desirable results in static scenes.
This is because in static scenes, Detect-SLAM filters out
some static information that is beneficial for camera pose
estimation and subsequent mapping, thereby affecting the
overall system's localization accuracy.
Semantic segmentation is a method of image segmentation

utilized within the domain of computer vision. It focuses on
the classification of each pixel in an image into predefined
categories. Different from traditional image segmentation
techniques, semantic segmentation not only divides an image
into several regions but also classifies each pixel, thereby
obtaining more precise image segmentation results. It is
utilized in multiple domains, including autonomous driving,
medical image analysis, and robotic vision.
In 2018, Bescos et al. introduced the DynaSLAM system.

It is founded on ORB-SLAM2 framework. This system
encompasses interfaces designed for monocular, stereo, and
RGB-D camera configurations. When we utilize monocular
and stereo cameras, Mask R-CNN is employed to perform
segmentation of dynamic entities in every frame acquired by
the camera. Thereby, this approach circumvents the necessity
for feature extraction of dynamic entities within the SLAM
framework. When utilizing an RGB-D camera as a sensor,
the system integrates multi-view geometry methods to
achieve more precise segmentation of dynamic objects,
thereby enhancing system performance in dynamic
environments. However, this approach involves significant
computational overhead and does not meet real-time
requirements.
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The same year, C. Yu et al. introduced DS-SLAM, a
method derived from ORB-SLAM2. Its main innovation lies
in the addition of a independent real-time semantic
segmentation module within the framework of ORB-SLAM2.
This thread is capable of removing dynamic objects from the
environment and creating a dense semantic octree map
containing environmental semantic information, enabling the
robot to perform higher-level tasks.
The above-mentioned methods have improved the

property of SLAM systems to some extent, but mechanically
removing dynamic objects can result in the loss of many
usable feature points in the system. To tackle this problem,
Cabon, Y et al. proposed the SLAMANTIC system [21],
which does not require motion detection. Instead, it
introduces confidence by assigning different probabilities of
motion to each object to ascertain whether the object is in a
state of motion. As a result, this methodology possesses the
ability to distinguish between objects that might be regarded
as dynamic, while they are, in reality, stationary. In addition,
This system integrates semantic label distribution with the
consistency of map point observations to evaluate the
reliability of each 3D measurement point. Subsequently, this
information is utilized for pose estimation and subsequent
map optimization steps.
In summary, semantic SLAM outperforms traditional

visual SLAM in overall performance. However, some
methods focus solely on improving accuracy while
overlooking real-time capabilities, while others exhibit good
real-time performance but lower accuracy and robustness.
Therefore, enhancing the accuracy of SLAM systems while
maintaining a certain level of real-time property constitutes a
significant area of research.

III. SYSTEM INTRODUCTION
This section offers a comprehensive analysis of the system

put forward in the present study. First, we present the
improvements of the system proposed within this paper on
the ORB-SLAM3 framework, including the incorporation of
an image enhancement module, the introduction of adaptive
thresholding, and the enhanced YOLOv7 network. Then, the
methods of implementing the image enhancement module
and using adaptive thresholding to improve the traditional
ORB feature extraction are explained in detail. Lastly, the
paper elaborates on the enhancement of the YOLOv7
network and its integration with polar constraints to propose a
method for filtering dynamic feature points.

A. Framework of our system
As illustrated in Fig. 1, ORB-SLAM3 is an open-source

VS system characterized by a tracking thread, a local
mapping thread, and a loop closing thread responsible for
maps fusion. As demonstrated in Fig. 2, our study is an
improvement upon ORB-SLAM3. Initially, in the tracking
threading, following the acquisition of image frames from the
camera, we introduce an image enhancement module to
improve the quality of processed images, ensuring enhanced
feature point extraction and minimizing the impact of blurred
images on the target detection thread. In the process of object
detection, we utilize the improved YOLOv7 to extract

semantic information pertaining to entities in images,
including labels and positions. Improvements have been
made to the traditional ORB feature point extraction method
by employing adaptive thresholding, enhancing the
robustness of feature point extraction. Finally, the semantic
information obtained from the object detection process is
combined with epipolar constraint to exclude feature points
that are linked to dynamic entities. In the subsequent tasks,
we will exclusively employ static feature points (sfp).

Fig.1. Framework of ORB-SLAM3

B. Image Enhancement Module
In the course of a mobile robot's movement, camera shake

inevitably occurs, leading to blurry images. Additionally,
fast-moving objects in the scene can also cause blurriness.
Many previous SLAM methods have overlooked these issues,
resulting in poor robustness and accuracy of SLAM systems
in environments characterized by high dynamics. This paper
introduces an image enhancement module into the
framework of ORB-SLAM3. This module preprocesses
images obtained from the camera using the DeblurGANv2
network.
The DeblurGANv2 network is an improvement over

DeblurGAN [22], achieving better results. Furthermore,
DeblurGANv2 utilizes the lightweight MobileNet [23] as its
backbone network, resulting in a 20x speed improvement
compared to DeblurGAN. It exhibits good real-time
performance, meeting the real-time requirements of SLAM
systems. The network architecture is illustrated in Fig. 3. The
DeblurGANv2 network consists primarily of a generator and
a discriminator. The generator employs the Feature Pyramid
Network (FPN) structure, which gathers feature outputs from
five branches and fuses them through upsampling to improve
the quality of produced images. In the discriminator part, a
relativistic discriminator utilizing a least-squares loss
function is implemented. Additionally, it integrates global
and local scale discriminator losses, ensuring a stable and
efficient training process.
Before integrating the DeblurGANv2 network into our

system, we enhanced its efficacy by curating a specialized
dataset encompassing a diverse array of objects such as
individuals, vehicles, books, and furniture. In our approach
detailed in this paper, frames captured by an RGB-D camera
are fed into an image enhancement module, leveraging the
trained DeblurGANv2 network for deblurring. This
procedure results in sharper frames, effectively mitigating
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blurring induced by camera shake and rapid object
movements. Subsequently, the deblurred frames are fed into
feature extraction and object detection modules to extract
keypoints and detect objects within the frames. To assess the
performance of DeblurGANv2, we conducted tests using the

TUM dataset. The outcomes, illustrated in Fig.4, substantiate
that the image enhancement module utilized in this study
significantly ameliorates issues of image blurring attributed
to camera shake and object motion.

Fig.2. System Overview

Fig.3. The architecture of DeblurGANv2 network

Fig. 4. Comparison images before and after enhancement using DeblurGANv2
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C. ORB feature extraction based on adaptive thresholding
In the ORB-SLAM3 system, ORB (Oriented FAST and

Rotated BRIEF) feature points are utilized, which consist of
Oriented FAST corners and BRIEF descriptors. FAST
corners primarily detect areas with significant local pixel
intensity changes, as illustrated in Fig. 5. The feature point
extraction process, as described in [15], involves selecting a
pixel P in the image with pixel value Ip. The threshold value
T is set (e.g., 20% of Ip). Then, 16 pixels are selected around
P, utilizing a radius of 3 pixels. If there are N consecutive
pixels on the circular path with values exceeding ( Ip + T ) or
falling blow ( Ip-T ), then P can be classified as a feature point.
It is customary to set the value of N to 12, a configuration
referred to as FAST-12. Other commonly used values for N
are 9 and 11, referred to as FAST-9 and FAST-11,
respectively). Since FAST corners use a fixed threshold
during extraction, only the points with the most significant
grayscale differences in the image are selected as corners.
This results in the inability to extract other useful feature
points within the image. Furthermore, during subsequent
feature extraction using quadtree partitioning, the method of
preserving the maximum Harris response value results in all
corners being concentrated in regions with richer textures.
This leads to redundant local feature points. If these feature
points gather on dynamic entities, removing dynamic feature
points may result in fewer available feature points. In severe
cases, this can cause localization failure in the SLAM system.
After the above analysis, selecting the appropriate

threshold is essential for extracting ORB features. In order to
enhance the robustness of feature point extraction in complex
environments for the SLAM system, we adopt an adaptive
thresholds selection method that is grounded in KSW entropy
value [24], determining the global threshold Tg based on the
grayscale distribution of the image. The KSW entropy
method refers to calculating the entropy of the grayscale
histogram of an image and utilizing conditional probability to
describe the distribution of grayscale values for objects and
backgrounds in the image, thereby defining the entropy for
both the objects and the backgrounds. The method employed
in this paper approximates the probability of each grayscale
value to represent the likelihood distribution of grayscale
values and extracts global grayscale information from the
image. The method primarily consists of two steps: first,
utilizing the grayscale histogram of the image to provide an
approximate estimation of the probability density function of
grayscale values. Subsequently, we utilize this function in
conjunction with the principles of entropy to construct an
objective function for threshold selection. This enables the
selection of adaptive thresholds based on the grayscale value
distribution of the image, thereby enhancing the adaptability
of the ORB feature extraction algorithm.

Fig. 5. ORB feature extraction

First, establish a threshold value t to divide the image with
grayscale values in the range [0, L-1] into two categories: [0, t]
and [t+1, L-1]. Let S1 and S2 represent the respective pixel
probability distributions. Consequently, S1 and S2 can be
articulated in the following formulas:

 1 0 1 2, , ,... tS P P P P (1)

 2 1 2 3 1, , ,...t t t LS P P P P    (2)
Where Pi presents the probability of each grayscale level

occurrence. Then, let �� = �0 + �1+⋯+��, the entropy of S1
and S2 can be articulated as:
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Consequently, the overall entropy of the image can be
expressed as the cumulative of the two types of entropy,
denoted as:

H(S) = H(S1) + H(S2) (5)
Next, iterate over all grayscale levels t within the range of

the grayscale histogram, calculating the sum of entropies for
the two classes. Then, the grayscale level corresponding to
the maximum value is denoted as Tmax and the grayscale level
corresponding to the minimum value is denoted as Tmin.
Therefore, the global optimal threshold Tg can be represented
as:

max mingT k T T   (6)
Where k represents the scaling factor. Although the global

threshold Tg can be adaptively selected based on the
distribution of grayscale values in the image, it assumes that
all regions of the image are under the same lighting
conditions. When local regions of the image have varying
contrasts due to shadows, the global threshold becomes
inadequate, leading to a decrease in the effectiveness of
feature extraction.
Therefore, in situations where lighting conditions vary

significantly, our study adopts a local adaptive threshold Ti to
address this issue. Assuming point A (x0, y0) is a potential
feature point in the image. A square region N, centered at A,
is selected with a side length of L. Then, the local adaptive
threshold Tl can be represented as:

max min
1 1

1 1

aver

n m

i i
i i
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(7)

In equation (7), we define the maximum gray value as Iimax
and the minimum gray value as Iimin in region N. Moreover,
Iiaver denotes the grayscale average value of region N. The
scaling factor k is typically chosen as 3.

D. The Improved YOLOv7 Network
To reduce the influence of dynamic objects present in

real-world environments on the SLAM system, our paper
improves the real-time target detection algorithm YOLOv7
[25] to enhance its detection accuracy. Subsequently, it is
utilized to identify the positions of dynamic objects in images
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and extract semantic information.
YOLOv7 algorithm, as a typical representative of

One-Stage target detection algorithm [26], has good real-time
performance, and its framework architecture is illustrated in
Fig. 6. First, YOLOv7 introduces reparameterization
(RepConv) [27] in the network structure, which decreases the
parameter count and computational demands, thereby
improving the network's operational efficiency. Then,
YOLOv7 improved ELAN by proposing E-ELAN
(Extended-ELAN), which utilizes extension, stochastic
disruption, and merging bases to achieve continuous
enhancement of the network's learning capabilities while
preserving the integrity of the original gradient pathways.
Also, E-ELAN can instruct different computational modules
to learn more different features. The label assignment
methodology employed by YOLOv7 integrates the cross-grid
search technique utilized in YOLOv5, along with the
matching strategy adopted in YOLOx. In addition to this, the
training approach incorporating an auxiliary head is used in
YOLOv7, which enhances the accuracy by elevating the
training expenses and does not affect the inference time.
Although YOLOv7 runs faster, its detection accuracy is

lower, so this paper introduces SimAM (Spatial information
Attention Mechanism) [28] in YOLOv7 to enhance its
precision.
The Attention Mechanism is a technique widely employed

in computer science and machine learning, where the output
of each neuron is influenced not only by the outputs of all
neurons in the preceding layer but also weighted based on
various aspects of the input data. This enables the network to
focus more on the specific information within the input
sequence, thereby enhancing both the accuracy and
efficiency of the model. SimAM is a powerful attentional
mechanism that has been widely used in the domain of
computer vision, including target detection, image
segmentation, and image generation. Different from existing
channel and spatial attention modules, SimAM generates 3D

attention weights for feature maps without the need to
introduce supplementary parameters. An additional benefit of
the module is that majority of the operations are predicated
on the selection of specified energy functions, reducing the
necessity for structural alterations. SimAM has the following
features:
1) SimAM is able to model relationships between features

at multiple levels, and it can focus on both low-level
features and high-level semantic features, enabling the
model to understand the input data more
comprehensively.

2) SimAM not only focuses on the features of each channel,
but is also able to mine the relationships between
different channels. This attention mechanism enables
SimAM to better learn the semantic connections
between features and improves the model’s
representational capabilities.

3) SimAM introduces spatial information and focuses on
the spatial distribution of features. This attention
mechanism enhances the model’s ability to precisely
localize the target region, increasing the precision of
target detection and segmentation.

4) SimAM is adaptive in that it is able to automatically
adjust its focus of attention according to the different
characteristics of the input data. This adaptability allows
SimAM to be applied to a variety of different types of
data, improving the module’s capacity for generalization.
As illustrated in Fig. 7, SimAM estimates
three-dimensional weights compared to the channel
attention module and the spatial attention module.

Attention mechanism is a plug-and-play module, in order
to increase the detection precision of YOLOv7 we inserts the
SimAM module on the feature extraction reinforcement
network of YOLOv7 as illustrated in Fig. 8.
Fig. 9 illustrates the effect of the improved YOLOv7

algorithm, indicating that the modified YOLOv7 is able to
detect the target in the image more accurately.

Fig. 6. YOLOv7's network structure
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Fig. 7. Comparison of different attention types

Fig. 8. Comparison of different attention types

Fig. 9. Target detection results. Figure (a) shows the input image and Figure (b) shows the detection result
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E. Target Detection Combined with Eippolar Line
Constraint to Reject Dynamic Feature Points
Previous SLAM methods based on target detection relied

exclusively on these results to eliminate dynamic feature
points. However, target detection networks often struggle to
ascertain whether inherently mobile objects, such as cars, are
currently in motion. Consequently, even when a car remains
stationary in the environment, the system may erroneously
discard associated feature points, markedly reducing the pool
available for pose estimation. Moreover, these approaches
frequently fail to filter out feature points attributed to static
objects like books or chairs that are being displaced by
individuals, resulting in inaccurate data associations and a
significant degradation in SLAM system precision.
In order to tackle these challenges, we integrate target

detection with an epipolar constraint approach to eliminate
dfp. First, we need to align the feature points from two
consecutive frames and use them to calculate the
fundamental matrix. Next, we can assess the distance
between the feature points in the current frame and their
related epipolar lines. Greater distances indicate a higher
likelihood of a dynamic feature point.
For achieving an accurate fundamental matrix, this study

identifies feature points designated as static targets using
semantic information. The fundamental matrix ( F ) between
two frames is then computed employing a seven-point
method within a RANSAC framework. According to the
pinhole camera model, as illustrated in Fig. 10, O1 and O2

denote the optical centers of a camera. The movement of
camera between successive frames, M1 and M2, is described
by R and t. P represents an arbitrary point in space. P1 and P2
denote the projections of the point P onM1 and M2, l1 and l2
denote the two polar lines.

Fig. 10. Epipolar constraint

The chi-square coordinates of P1 and P2 can be expressed
as:

1 1 1[ , ,1]P x y , 2 2 2[ , ,1]P x y (8)
In which x and y represent the pixel coordinate values of

the feature points, the polar line l2 can be expressed as:

1

2 1

1

xX
l Y F y

Z

  
      
     

(9)

X, Y, Z in Eq. 9 denote the line vectors. As indicated in the
Literature [29], we express the epipolar constraint as:

2 1 2 2 0T Tp Fp p l  (10)

Then, we express the distance between p2 and the epipolar
line as d, which is also known as the offset dist. It is
calculated as follows:

2 1

2 2

Tp Fp
d

X Y



(11)

From Eq. 11, in an ideal scenario, when d = 0, the feature
point p2, representing the current frame, is situated on l2.
Therefore, it may be considered static.
However, in practice, the presence of various forms of

noise typically results in the offset dist exceeding 0, yet
remaining below a defined empirical threshold, denoted as ε.
In this paper, the threshold is selected as 0.6, and when d is
less than ε, we regard this feature point as static.
To summarize, the steps for removing dynamic feature

points in our study are as follows:
Step 1: We employ the improved YOLOv7 to identify

various targets in deblurred images and ascertain their
positions within these images, while also delineating
detection boxes. In addition, we extract semantic information
about the targets to provide necessary data for subsequent
tasks.
Step 2: We need to determine whether those feature points

in the dynamic object detection frame satisfy epipolar
constraint. If the feature points in the detection frame don’t
satisfy epipolar constraint, they are considered as dynamic
feature points and are no longer used in the subsequent
tracking threads.

IV. EXPERIMENTS

In this section, we assess the efficacy of our system by
conducting evaluations employing the TUM dataset.
Subsequently, we compare the outcomes with those obtained
from ORB-SLAM3. In addition, this paper also compares
with advanced VS algorithms that utilize object detection in
dynamic surroundings such as AHY-SLAM and RDS-SLAM.
All experiments in this paper were conducted on a computer
system featuring an Intel i5 CPU, RTX1050Ti GPU, and
16GB of memory.

A. TUM dataset and evaluation metrics
The TUM RGB-D dataset [30], provided by the Computer

Vision Group at the Technical University of Munich,
represents a large-scale resource that has set a new standard
for evaluating SLAM systems. We utilized five data
packages that encompass a significant number of dynamic
objects to test our system’s performance, respectively
fr3/walking/xyz, fr3/walking/half, fr3/walking/static,
fr3/walking/rpy, and fr3/sitting/static. The initial four data
packets include a greater number of dynamic objects,
whereas the final data packet has a smaller quantity of
dynamic objects.
We utilize two metrics to assess the effectiveness of the

method we proposed: Absolute Trajectory Error (ATE),
which measures the disparity between estimated and ground
truth trajectories, and Relative Pose Error (RPE), utilized to
quantify rotational drift and translational drift.

B. Experimental Results Analysis
This paper presents improvements upon ORB-SLAM3. To

illustrate the benefits of our system, we conducted a
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comparative analysis of the experimental data acquired from
our system against these obtained from ORB-SLAM3, as
shown in Table I to III. In these tables, RMSE (Root Mean
Square Error) quantifies the disparity between predicted and
actual values. A lower RMSE signifies closer approximation
to the true values. S.D. (Standard Deviation) gauges the
spread of values within a dataset, with a smaller standard
deviation indicating reduced variability and enhanced system
stability. Tables I through III demonstrate that our system
outperforms ORB-SLAM3 by over 91% in most
high-dynamic sequences, confirming the superior
performance of our system in highly dynamic environments.
The performance in low dynamic surroundings is slightly
inferior to ORB-SLAM3, possibly due to our system's
dynamic feature point removal process inadvertently
discarding some useful static feature points.
Fig. 11, 12, and 13 illustrate the estimated trajectories and

ground truth trajectories for both systems across the five data
packages. Dashed lines represent the actual trajectories,
while solid lines depict the estimated trajectories. If the
estimated trajectory is closer to the true trajectory on the
ground, it indicates that the system’s tracking and positioning
performance is better. From the figure, it is evident that in

dynamic environments, the trajectory estimated by our
system closely matches the ground truth trajectory. Therefore,
the proposed system demonstrates superior tracking and
localization performance.
To further validate the advancements of our system, we

compared it with recently published SLAM algorithms, such
as RDS-SLAM and AHY-SLAM. As shown in Table IV, our
system exhibits significantly lower RMSE and S.D. across
the five sequences compared to these algorithms,
demonstrating its superior performance and advanced
capabilities. As a crucial component of mobile robotics,
real-time capability is essential for SLAM systems. Hence,
we also measured the runtime of the SLAM systems. The
runtime of each SLAM system is illustrated in Table V.
As indicated in Table V, we can see that our system

exhibits better real-time performance compared to
RDS-SLAM and AHY-SLAM, averaging 75ms per frame.
However, there is an increase in processing time of 13ms
compared to ORB-SLAM3, which is attributed to the
inclusion of the image enhancement module and the thread
for the removal of dfp. In summary, our system demonstrates
good real-time performance and is applicable for deployment
in real-world environments.

TABLE I. Comparison of ATE between ORB-SLAM3 and Ours in TUM sequences

Sequence
ORB-SLAM3 Ours Improvement/%

RMSE S.D. RMSE S.D. RMSE S.D.

fr3_walking_xyz 0.7126 0.3672 0.0163 0.0086 97.71 97.65

fr3_walking_half 0.3942 0.2854 0.0207 0.0158 94.47 94.46

fr3_walking_static 0.4001 0.0640 0.0072 0.0038 98.2 94.06

fr3_walking_rpy 0.4223 0.3321 0.0443 0.0367 89.52 88.96

fr3_sitting_static 0.0075 0.0044 0.0078 0.0045 -4.3 -3.2

TABLE II. Results of metric rotational drift (RPE)

Sequence
ORB-SLAM3 Ours Improvement/%

RMSE S.D. RMSE S.D. RMSE S.D.

fr3_walking_xyz 6.2841 3.4841 0.2928 0.1972 95.34 94.34

fr3_walking_half 6.8735 5.4233 0.4728 0.4598 93.12 91.52

fr3_walking_static 2.7134 2.2098 0.2374 0.2134 91.25 90.34

fr3_walking_rpy 5.3785 3.4785 0.7142 0.5725 86.72 83.54

fr3_sitting_static 0.1687 0.0087 0.1781 0.0094 -5.6 -8.2

TABLE III. Results of metric translational drift (RPE)

Sequence
ORB-SLAM3 Ours Improvement/%

RMSE S.D. RMSE S.D. RMSE S.D.

fr3_walking_xyz 0.3523 0.2243 0.0170 0.0117 95.16 94.78

fr3_walking_half 0.2879 0.2165 0.0219 0.0170 92.38 92.14

fr3_walking_static 0.1744 0.1543 0.0044 0.0027 97.44 98.23

fr3_walking_rpy 0.3728 0.2631 0.0438 0.0354 88.24 86.53

fr3_sitting_static 0.0081 0.0042 0.0084 0.0044 -4.2 -2.7

Engineering Letters

Volume 32, Issue 10, October 2024, Pages 1909-1920

 
______________________________________________________________________________________ 



Fig. 11. Comparison chart of estimated trajectory and actual trajectory

Fig. 12. Comparison chart of estimated trajectory and actual trajectory
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Fig. 13. Comparison chart of estimated trajectory and actual trajectory

TABLE IV. Comparison of absolute trajectory errors between Ours and other similar SLAM methods.(ATE)

Sequence
RDS-SLAM AHY-SLAM Ours

RMSE S.D. RMSE S.D. RMSE S.D.

fr3_walking_xyz 0.0571 0.0229 0.0182 0.0098 0.0163 0.0086

fr3_walking_half 0.0807 0.0454 0.0321 0.0174 0.0207 0.0158

fr3_walking_static 0.0206 0.0120 0.0081 0.0043 0.0072 0.0038

fr3_walking_rpy 0.1604 0.0873 0.1938 0.1588 0.0443 0.0367

fr3_sitting_static 0.0084 0.0043 0.0089 0.0049 0.0069 0.0041

TABLE V. Time analysis
Systems Average Processing Time Per Frame(ms)

ORB-SALM3 62
Ours 75

AHY-SLAM 103
RDS-SLAM 82

V. CONCLUSION
This paper introduces a real-time semantic SLAM system

integrating an enhanced YOLOv7 network. Initially, we
introduce an image enhancement module into the
ORB-SLAM3 framework, leveraging the DeblurGANv2
network to deblur camera-captured images, thereby
enhancing the quality of image frames. Subsequently, we
incorporate a thread dedicated to the detection of objects into
the system. We refine the YOLOv7 network to optimize its
performance and integrate it within the object detection
thread to obtain object positions and semantic information
from the image frames. Additionally, we introduce an
adaptive threshold in the traditional ORB feature extraction
method to bolster feature extraction capabilities, laying a
robust foundation for pose estimation. Finally, to mitigate the
influence of dynamic feature points on system performance,

We integrate the outputs from the object detection process
with epipolar constraints in order to eliminate dynamic the
dfp. Experimental results show that our proposed system
achieves over 90% improvement in accuracy compared to
some existing SLAM algorithms. Furthermore, by utilizing
the enhanced YOLOv7 algorithm, our system enhances
precision while simultaneously preserving real-time
operational efficiency.
Although the system proposed in this paper has numerous

advantages, it still exhibits limitations. For instance, during
the elimination of the dfp, some useful sfp may inadvertently
be discarded, leading to decreased accuracy. Furthermore, the
system exhibits competent functionality in indoor settings
where the dynamic objects is minimal. However,its efficacy
diminishes when faced with numerous fast-moving objects in
outdoor settings. To address the issue of mistakenly
removing static feature points, we will continue researching
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more rational methods for dynamic feature point removal,
such as employing advanced selection algorithms.
Additionally, we will investigate techniques to enhance the
system's ability to detect a high volume of fast-moving
objects, such as further improving the structure of the
detection network to enhance its performance.
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