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Abstract—To address the challenge of accurately 

determining the saturation state induced by transformer DC 

bias, we propose a combined method for analyzing the DC bias 

of the transformer using vibration signals. This method 

employs the complementary ensemble empirical mode 

decomposition (CEEMD) to preprocess the vibration signals 

and fuzzy entropy (FuzzyEn) to assess the degree of DC bias. 

The optimal measurement point of the transformer is 

determined through transformer mechanical analysis. 

Subsequently, a vibration test. experimental platform is 

established to capture vibration signals at five distinct points 

on the transformer shell and core. These signals are then 

subjected to CEEMD for reconstruction, enabling the 

determination of the degree of DC bias. This assessment is 

based on fuzzy entropy values and difference curve analysis. 

The results demonstrate that the FuzzyEn value, serving as an 

indicator of the iron core's saturation due to DC bias, 

effectively detects the level of DC bias. Upon reaching its 

maximum value, the FuzzyEn of the vibration signal signifies 

the core's entry into the saturation zone. Specifically, the 

maximum FuzzyEn value is approximately 1.5 A on both sides 

of the core, about 1 A on the left and right sides of the shell, 

and 2 A in the middle of the shell. These findings confirm the 

efficacy of the combined CEEMD and FuzzyEn method. 

 
Index Terms—CEEMD reconstruction, Fuzzy Entropy, 

transformer vibration, DC bias 

 

I. INTRODUCTION 

HE concept of the energy internet has been proposed 

and is poised for global development, driving the 

growing adoption of high voltage direct current (HVDC) 

transmission systems. These systems are favored for their 
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ability to enhance power transmission capacity and ensure 

high stability over long-distance power delivery. However, 

when an HVDC transmission system is operated with a 

unipolar earth return line, the direct current flowing back 

from the ground can infiltrate the neutral grounded 

transformer windings, leading to DC bias magnetization of 

the transformer [1]. DC bias can induce saturation in the 

transformer core, pushing it beyond the linear operating 

range of magnetization. This leads to distortion in the 

excitation current and an upsurge in losses. Additionally, it 

can trigger issues such as abnormal transformer vibration 

and heightened noise levels [2]. 

The theoretical study of the DC bias problem involved a 

comprehensive analysis from both circuit and magnetic 

circuit perspectives [3], [4]. This analysis aimed to identify 

and propose potential modes arising from DC bias, offering 

insights into the various ways in which DC bias affects 

transformer performance. The proposal to describe the DC 

bias process through the DC magnetization curve offers a 

solution to the challenge of intuitively capturing the actual 

influence of DC under typical operating conditions [5]. This 

approach provides a more tangible representation, enhancing 

understanding and facilitating analysis of the magnetization 

process. The study focused on investigating the temperature 

rise of transformers operating under DC bias conditions [6]. 

By comparing transformer failure data with simulation 

results, the study determined the loss levels, temperature rise, 

and associated losses experienced by the transformer under 

DC bias conditions [7]. Primarily, the analysis aimed to 

understand the operational characteristics of transformers 

subjected to DC bias, providing insights into their 

performance and reliability under such conditions. The 

investigation delved into the phenomenon of transformer 

core saturation, identifying the magnetostrictive effect of the 

material as a crucial factor contributing to the vibration of 

transformer cores [8], [9], [10]. The experimental studies 

included vibration measurements to investigate the 

relationship between magnetostriction and vibration. These 

studies specifically accounted for transformer vibration, 

aiming to establish correlations between magnetostrictive 

effects within the transformer core and the resulting 

mechanical vibrations [11], [12]. In the aforementioned 

studies, transformer vibration was taken into consideration 

as a crucial aspect. The focus of the study is on conducting 

vibration analysis and extracting relevant features in the 

context of transformers operating under DC bias conditions. 

This research aims to comprehensively understand how DC 

bias affects transformer vibrations and to identify key 
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characteristics or indicators associated with these vibrations 

[13], [14], [15]. The analysis focuses on understanding the 

vibration mechanism induced by DC bias in transformers 

and proposes a method for feature extraction to characterize 

this phenomenon. Subsequently, the proposed bias vibration 

features are validated by analyzing field data measurements 

obtained from transformers experiencing DC bias-induced 

vibrations. This comprehensive approach aims to provide 

deeper insight into the underlying mechanisms of DC 

bias-induced vibration in transformers and to establish 

reliable features for effective monitoring and diagnosis of 

transformer health under such conditions [16], [17]. Indeed, 

utilizing vibration methods for diagnosing transformer DC 

bias and assessing saturation state represents a relatively 

novel area with limited related studies. The complexity of 

transformer structures and components poses challenges in 

accurately selecting vibration test points, and assessing the 

degree of DC bias solely through iron core vibration 

measurements is inherently difficult. Given these 

complexities, a more objective approach involves analyzing 

vibrations from various parts of the transformer to monitor 

DC bias and determine saturation states. By examining 

vibrations across different components, a more 

comprehensive understanding of transformer behavior under 

DC bias conditions can be achieved, facilitating more 

accurate diagnosis and assessment of saturation states. This 

approach accounts for the multifaceted nature of transformer 

operation and provides a more holistic perspective on the 

effects of DC bias. 

In this paper, we introduce a novel combined method 

employing complementary ensemble empirical mode 

decomposition (CEEMD) and fuzzy entropy (FuzzyEn) for 

analyzing transformer vibration signals under DC bias 

conditions [18]. CEEMD offers the advantage of 

decomposing vibration signals without imposing prior 

assumptions on the data, thereby enabling the division of the 

acquired signal into a series of intrinsic modal functions 

(IMFs) across different frequency bands and residuals [19]. 

Consequently, the CEEMD method is well-suited for 

effectively separating noisy modes. A key contribution of 

this work lies in the enhancement of transformer signals 

following CEEMD processing. The application of FuzzyEn 

for DC bias detection is proposed as a sophisticated method 

in addition to CEEMD. FuzzyEn offers the advantage of 

expressing the regularity of a time series across multiple 

dimensions and containing more time-dependent 

information [20]. This makes it particularly attractive for 

dynamic monitoring systems, where information about the 

temporal progression of defects is valuable not only for 

diagnosing the current machine condition but also for 

predicting its future behavior [21]. Thus, integrating 

FuzzyEn into the analysis enhances the capability to monitor 

transformer health and anticipate potential issues related to 

DC bias. The paper is structured as follows: First, a 

transformer mechanical analysis was performed to 

determine the optimal measurement point of the transformer 

[22]. Secondly, DC bias experiments are performed on a 

three-phase 5 kVA transformer to monitor the vibration 

signals at five different points on the core and casing. 

Finally, the principle and calculation process of CEEMD 

and FuzzyEn are presented. According to the transformer 

noise characteristics, the interference modes of the 

transformer vibration are filtered out by CEEMD 

reconstruction to obtain effective vibration signals. The 

harmonic characteristics of the vibration signal are analyzed 

using the reconstructed signal. The FuzzyEn values and 

differential curves of the reconstructed signal under DC bias 

are calculated. 

 

II. MECHANICAL ANALYSIS OF TRANSFORMERS 

A. Transformer Physical Model 

Analyze the mechanical properties of transformers in 

operation and perform computational studies on 

experimental transformers. The object of the study is a 

customized SG-5 transformer, the parameters of which are 

demonstrated in Table I. The transformer was modeled 

using COMSOL multiphysics field simulation software to 

obtain the solution domain and size (latent transformer 

enclosure) as shown in Fig. 1. 

TABLE I 

SG-5 TRANSFORMER PARAMETERS 

Parameters Numerical value 

Nominal Voltage 400 V 

No-Load Current 12 % 

Short-Circuit Loss 160 W 
Rated Capacity 5 kVA 

No-Load Loss 75 W 

Impedance Voltage 3.5 % 

 

 
Fig. 1.  The solution domain of the 

air domain

transformer 

 

B. Model Solving and Calculations 

The main purpose of the overall structural calculation of 

the transformer is to analyze the influence of the mechanical 

properties of each structural component through the 

transformer vibration source, which is a multi-physical field 

coupling problem of electricity-magnetism-force. A 

COMSOL secondary development interface and a hybrid 

programming method are used to numerically compute the 

electromagnetic and force fields of the transformer. This 

method uses the process iteration method of transient time, 

in which the physical fields are performed by successive 

sequences of convergent iterations within each point in time. 

Its computational flow is shown in Fig. 2. 
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Fig. 2.  Calculation flow chart of the transient model 
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Fig. 3.  Transformer structure and the analysis objects 

 

A. Overall Structural Calculation and Analysis 

The distribution of each field of transformer 

electric-magnetic-force can be derived by using COMSOL 

for multi-physical field coupling, and the results are 

analyzed. The focus is on the mechanical property 

characteristics of the transformer, therefore, the transformer 

structural parts and casing are selected as the objects of 

study when carrying out the research. As shown in Fig. 3, 

the three directional surfaces of the transformer casing are: 

front face A, side face B, and top face C. The axes on each 

surface are labeled as Line A, Line B, and Line C. The edge 

ridges of the structural member are called Line 1. 

Mechanical properties analysis of internal structural parts: 

Selected the surface line of the clamped parts as the object 

of study. The deformation of the line along the x, y, and z 

axes was calculated separately, and the results are shown in 

Fig. 4. The results show that the ridge line on the surface of 

the structural part at a single power frequency exhibits a 

periodic change twice the power frequency. Simultaneously, 

the deformation distribution of the left and right parts is 

asymmetric, and this asymmetry does not change with time. 
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Fig. 4(a) demonstrates the deformation of the line in the 

x-direction. Upon observation, it can be found that the 

deformation directions of the left and right ends differ, with 

the left end dominated by the negative direction and the 

right end by the positive direction. Fig. 4(b) illustrates the 

deformation of the line in the y-direction. It is found that the 

y-direction deformation is mainly concentrated in the central 

region, and the magnitude of deformation varies drastically. 

The direction of deformation alternates between positive and 

negative directions, which is very pronounced. Fig. 4(c) 

shows the deformation of the line in the z-direction. It can 

be seen that both the left and right sides of the z-direction 

experience only positive deformation, and the amplitude 

changes are very drastic. In the center, the deformation 

alternates between positive and negative directions. This 

uniform deformation is primarily caused by the phase 

difference of the three-phase magnetic flux inside the 

transformer. 

The mechanical analysis of the box shell focuses on 

investigating the behavior of the three surfaces of the shell. 

Fig. 5 shows the results of the deformation distribution of 

the transformer case at certain moments. Fig 5(a) indicates 

that the deformation of the front face is primarily 

concentrated in the middle under the influence of multiple 

forces. The maximum deformation gradually shifts to the 

leftover time and decreases uniformly, with the influence 

gradually dispersing in all directions. Fig. 5(b) illustrates the 

deformation distribution on the side face, where the degree 

of deformation varies gradually from bottom to top over 

time, showing a more even change. Fig. 5(c) demonstrates 

the deformation of the top surface over time, where the 

maximum value alternates between the left and right ends. 

Additionally, the outer edges of the top surface exhibit 

larger deformation magnitudes compared to the central 

portion. 
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Fig. 4.  The deformation change on the ridge 
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Fig. 5.  Transformer shell surface deformation changes 
 

I. TRANSFORMER DC POLARIZATION VIBRATION TEST 

A. Vibration Test System Design 

 This paper analyzes the vibration of transformer cores 

through experimental methods. A vibration testing system is 

constructed to measure vibration signals at various points on 

both the transformer core and casing.  

Sensors are employed to capture the vibration 

acceleration of the transformer core. During testing, a 

piezoelectric acceleration sensor is utilized, with its 

performance characteristics detailed in Table II. The 

experimental setup is illustrated in Fig. 6. The test procedure 

is depicted in Fig. 7. 

TABLE Ⅱ 

IC PIEZOELECTRIC ACCELERATION SENSOR 

Sensitivity Range Frequency Resonant Resolution 

1000m V/g 5 g 0.1-2000 Hz 7.5 kHz 0.00002 g 
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Fig.6.  Experimental system of vibration test 
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Fig.7.  Block diagram of the test system 

 

Vibration signals from the transformer are captured using 

vibration sensors, which are crucial for monitoring different 

operating states under both normal conditions and post-DC 

injection. These sensors typically operate based on 

acceleration or velocity measurement principles, converting 

mechanical vibrations from the transformer into electrical 

signals. Given the typically weak nature of vibration signals, 

amplification to an appropriate range is required using a 

signal amplifier. Additionally, because acquired signals may 

contain noise and interference, they are processed by a 

signal conditioner for tasks such as filtering and gain 

adjustment, enhancing signal quality and accuracy. 

Subsequently, the processed vibration signals are converted 

to digital signals by an acquisition card and transmitted to an 

industrial control computer (IPC). The acquisition card 

typically features high-speed sampling rates, accuracy, and 

stability to ensure data accuracy and reliability. Finally, 

software programs on the IPC analyze and process the 

collected data. 

 

B. Vibration Signal Acquisition 

There exists a correlation between the vibration signals 

and the structure and operating conditions of the transformer. 

DC bias typically results in an uneven distribution of the 

magnetic field in the transformer core, leading to increased 

core vibration. Based on the results of the mechanical 

analysis of the transformer, it is observed that the 
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deformation of the iron core is more pronounced in the 

vertical direction, with noticeable deformation also observed 

on the top surface of the transformer shell. Therefore, in Fig. 

8, arrows indicate several test points for measurement and 

analysis. It is imperative to place sensors at these five 

measurement points in the test process, ensuring that the 

sensors are tightly affixed to the measured surface with no 

gap between them. This is essential for obtaining accurate 

measurement results. 

The initial step of the test involves measuring the 

vibration signal under normal conditions through a no-load 

test. Subsequently, varying DC currents are applied to the 

neutral point of the transformer for testing purposes. The 

vibration levels at five points are measured under normal 

operating conditions and with a 2 A DC bias. The vibration 

signals and corresponding spectra are illustrated in Fig. 9 

respectively. 
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Fig.8 .   Vibrat ion test  point  distribution  
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(e) Point E 

Fig.9.  Vibration measurements at each test point during transformer 

operation 

According to the measurement results, the vibration 

acceleration signals at different points of the transformer 

mainly contain components of 50 Hz frequency and its 

octave. The vibration acceleration waveform changes 

significantly at each test point when 2 A DC is added to the 

neutral point of the transformer. In the vibration signals of 

points A and B of the iron core, the components of the 50 

Hz frequency and its multiples (100 Hz, 150 Hz, etc.) 

increase significantly; the vibration signals of points A and 

B can intuitively reflect the frequency of the iron core and 

Vibration of the structural parts. From the perspective of the 

vibration signal characteristics, the vibration component at 

point A is richer than that at point B. For the vibration 

signals at the top of the transformer at points C, D, and E, 
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the 250 Hz component is significantly increased. The 50 Hz 

component of the vibration at the top point C also increases, 

while the 100 Hz component of the vibration at the top 

center point decays quickly. When DC bias is present in a 

transformer, the vibration will contain other odd harmonics 

such as 50 Hz, 150 Hz, 250 Hz, etc. However, high 

frequencies above 800 Hz will change irregularly with 

increasing DC bias and can be considered as a result of the 

mixing of vibration signals and noise. 
 

C. Vibration Characteristics under DC Bias 

To investigate the harmonic variations of transformer 

vibration under the influence of DC bias, a DC ranging from 

0 to 2 A is applied to the transformer, and its vibration 

signal is measured. The optimized signal is obtained by 

CEEMD filtering, and the specific results are depicted in Fig. 

10 In this figure, the horizontal axis represents the DC level, 

while the vertical axis represents the ratio of harmonic 

amplitude between the DC bias condition and the normal 

state. 
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Fig. 10.  Transformer vibration signal harmonic ratio of each test point 

 

Figures 10(a) and 10(b) illustrate the vibration harmonic 

ratios at points A and B above the transformer core. Figure 

10(a) demonstrates that the odd harmonic amplitudes of core 

vibration increase with the DC level. The 7th harmonic (350 

Hz) exhibits the most significant increase, reaching a factor 

of 5 when the DC reaches 2 A, whereas the even harmonics 

remain nearly constant. Figure 10(b) illustrates the growth 

of odd harmonics of the vibration signal at point B as the 

DC increases, with the most substantial growth in the 

fundamental harmonic. This phenomenon occurs due to the 

asymmetrical vibration between the left and right phases of 

the transformer, where the left side (point A) exhibits more 

complex vibrations than the right side (point B). Figure 10(c) 

displays the harmonic amplitude ratios of shell vibration, 

with odd harmonics increasing significantly while even 

harmonics remain nearly constant. The 1st harmonic (50 Hz) 

component increases by a factor of 13. Figure 10(d) 

illustrates that the 5th harmonic grows with increasing direct 

current, demonstrating a clear linear relationship with the 

DC, while the remaining harmonic components exhibit 

slight fluctuations from the original level. Figure 10(e) 

demonstrates that all harmonics of the vibration signal 

increase linearly with the rise in DC, while the even 

harmonics remain unchanged. The 3rd harmonic (150 Hz) 

component increases by a factor of 23. The measurements 

indicate that the silicon steel enters the saturation zone under 

the influence of the DC. Furthermore, an obvious nonlinear 

relationship exists between flux density and 

magnetostriction in the saturation region. Consequently, odd 

harmonics appear and increase significantly with the DC. 
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II. SIGNAL RECONSTRUCTION AND ANALYSIS 

A.  Complementary Ensemble Empirical Mode 

Decomposition 

Transformer vibration signals typically encompass 

multiple frequency components and amplitudes that vary 

continuously, with high-frequency signals (i.e., noise 

components) often failing to reflect the operational 

conditions of the transformer. The Complete Ensemble 

Empirical Mode Decomposition with Adaptive Noise 

(CEEMD) method effectively addresses this issue by 

decomposing the signal into a series of Intrinsic Mode 

Functions (IMFs), thereby allowing for the extraction of 

localized features within the signal. The CEEMD algorithm 

enhances decomposition efficiency by introducing both 

positive and negative auxiliary white noise to the original 

signal. This addition aids in effectively canceling out noise 

during ensemble averaging, thereby improving the 

decomposition process. The algorithm addresses challenges 

associated with EMD, such as substantial reconstruction 

errors and incomplete decomposition. [23]. 

Adding positive and negative Gaussian white noise to the 

original noise, as in Eq(1). and Eq(2): 

 ( ) ( ) ( )1is t s t G t= +  (1) 

 ( ) ( ) ( )1is t s t G t= +  (2) 

In this equation, 1( )iS t  and 2 ( )iS t  is the signal after 

adding positive and negative noise, ( )s t  is the original 

signal, and ( )G t  is the white noise signal. 

CEEMD decomposes the added positive and negative 

signals to obtain a series of independent IMFs. Repeat the 

above steps to obtain the corresponding IMF components 

and calculate the average of all IMF components as shown 

in Eq(3): 

 ( )1 2

1

1 n

i i i

i

IMF IMF IMF
sn =

= +  (3) 

In this equation, IMFi1 and IMFi2 are the IMF components 

with positive and negative noise decomposition added, and 

IMFi is the average of the IMF components. 

The signal obtained from CEEMD decomposition is 

shown in Eq(4): 

 ( ) ( )
1

N

i n

j

S t IMF R t
=

= +  (4) 

In this equation, ( )nR t  is the residual term and ( )S t  

is the decomposed original signal. 

 

B. CEEMD-VEA-Based Transformer DC Bias Vibration 

Signal Reconstruction 

When a DC bias is present in a transformer, the vibration 

will contain other odd harmonics such as 50 Hz, 150 Hz, 

250 Hz, etc. However, higher frequencies above 800 Hz 

exhibit irregular changes with increasing DC bias, 

potentially due to a mixture of vibration signals and noise. 

Despite the CEEMD decomposition of the signal, some 

interference persists. Even minor interference components 

can significantly impact signal complexity To mitigate this 

effect, this paper proposes reconstructing the signal using 

the CEEMD-VAE method to obtain a feature signal with 

enhanced information accuracy. The DC bias signal at test 

point A is decomposed using CEEMD, as shown in Fig. 11. 

Fig. 11 illustrates that the application of Complete 

Ensemble Empirical Mode Decomposition (CEEMD) to the 

vibration signal results in the formation of seven Intrinsic 

Mode Functions (IMFs) and one residual function. The 

amplitudes of IMF1 and IMF2 are notably small, 

approximately on the order of 10e-3. IMF1 primarily ranges 

between 1000 Hz and 5000 Hz, while IMF2 spans 

approximately 1000 Hz to 2000 Hz. These results suggest 

the presence of interference or noise. IMFs 3 through 7 

represent the intrinsic modes of the vibration signal. 

CEEMD filters the signal to obtain intrinsic modes ranging 

from high to low frequencies. IMFs 3 to 5 display 

amplitudes of mid-frequency components, which are the 

main components of the signal. In contrast, IMF6 and IMF7 

indicate that low-frequency modes are minimal. 

Consequently, it is important to analyze each vibration mode 

based on the performance of the IMFs. The frequency of 

transformer vibrations is predominantly concentrated below 

1000 Hz. 
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Fig.11.  Vibration decompositions of A test point with DC bias by CEEMD 

Engineering Letters

Volume 32, Issue 10, October 2024, Pages 1888-1900

 
______________________________________________________________________________________ 



 

  

      

  

      
by CEEMD

original

by CEEMD

original

by CEEMD

original

by CEEMD

original

 
Fig.12.  DC bias vibration of A point disposed of by CEEMD  
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Fig.13.  DC bias vibration of C point disposed of by CEEMD 
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Fig.14.  The reconstructed signal 

 

IMF1 and IMF2 were filtered using CEEMD, and the 

results are shown in Fig. 12 and Fig. 13 This figure displays 

the DC bias vibration signal at test point A and point C. 

After filtering the first two IMFs, the signal quality is 

notably improved. As observed from the spectrum, 

frequencies above 1000 Hz are attenuated through CEEMD 

filtering. Similar processing is applied to signals from other 

test points. Each IMF component serves as input data and is 

reconstructed using a Variational Autoencoder (VAE). 

Taking point A as an example, the final reconstructed signal 

is depicted in Fig. 14 This approach differs from 

conventional low-pass filtering methods, which can only 

address specific frequencies rather than vibration modes. 

CEEMD-VAE, however, effectively identifies both noise 

frequencies and vibration modes, making it a robust method 

for processing vibration signals. 

A. Characterization of Vibration Signals DC Bias 

The magnetostrictive effect is crucial in analyzing the 

saturation characteristics of a transformer core. As the core 

approaches or reaches saturation, the alignment of most 

magnetic domains with the magnetic field direction leads to 

the stabilization of the magnetostrictive effect. The 

magnetostriction curve is depicted in Fig. 15 [24]. As the 

magnetic induction rises from zero to its peak and then 

declines back to zero, the strain curve delineates a closed 

region. Examination of the magnetostrictive transient 

waveform, illustrated in Fig. 16 [24], reveals that the strain 

deviates from a sinusoidal form during a cycle. This 

phenomenon occurs because when DC bias is present, the 

magnetic flux increases due to the DC, leading to 

asymmetry between the positive and negative half-cycles of 

the magnetostrictive butterfly curve, and consequently, 

differences in transient waveforms during each half-cycle. 
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Fig.15.  Butterfly curve of magnetostriction 
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Fig.16.  The transient waveform of magnetostriction 

 

Based on this characteristic, the half-wave signal energy 

ratio serves as a metric for quantifying the degree of DC 

bias, calculated as follows Eq(5). and Eq(6): 
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The time-domain half-wave energy ratios of the 

displacement signal for both the transformer core and shell 

vibration, as influenced by increasing DC, have been 

calculated, with the results presented in Table III. 
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TABLE III  

THE CALCULATION RESULTS OF HALF WAVE ENERGY RATE  

DC(A) A B C E 

0 1.315 1.445 1.120 1.169 

0.2 1.329 1.454 1.125 1.214 

0.4 1.316 1.472 1.177 1.232 

0.6 1.367 1.741 1.211 1.592 

0.8 1.428 1.922 1.277 1.913 

1 1.443 2.147 1.445 2.060 

1.2 1.453 2.263 1.535 2.216 

1.4 1.590 2.534 1.615 2.451 

1.6 1.734 2.804 1.669 2.697 

1.8 1.995 3.006 1.714 2.781 

2 2.319 3.183 1.762 2.877 
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Fig.17.  Analysis of the half wave energy rate of vibration signals in normalization 

 

The results in Table III indicate that the half-wave energy 

ratios of vibration at the test points on both the core and the 

transformer shell increase with rising DC. To further 

ascertain the impact of factor F on DC bias, the normalized 

half-wave energy ratio is derived by comparing the 

calculated results under various DC currents with those 

obtained under unbiased conditions, as illustrated in Fig. 17. 

In summary, the analysis reveals a positive correlation 

between the calculated results for the iron core (points A 

and B) and the top of the transformer shell (points E and F) 

and the magnitude of DC bias. As the DC increases, F also 

rises, suggesting that under cyclic alternating current, the 

core material experiences greater magnetostrictive 

differences between the first and second half-cycles, thereby 

creating a significant disparity in signal energies between 

cycle halves. Therefore, from the above analysis, it can be 

inferred that the half-wave energy ratio of the calculated 

signal effectively quantifies the degree of transformer DC 

bias. 

 

A. Fuzzy Entropy 

Fuzzy entropy represents a sophisticated method for 

quantifying the complexity of time series data. It employs an 

exponential function for fuzzification, thereby ensuring 

stable and continuous variations in fuzzy entropy. Moreover, 

the application of a mean value operation effectively 

mitigates the adverse effects of baseline drift on entropy 

values. The computation of fuzzy entropy generally involves 

the evaluation of the affiliation function of elements within a 

set. The affiliation function quantifies the extent to which 

each element is associated with the fuzzy set. Higher values 

of the affiliation function denote a greater degree of 

relevance, while lower values signify reduced relevance. 

[25], [26]. 

Phase space reconstruction of a set of time series X of 

length N yields a time series Y as shown in Eq(7): 
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In this equation, m is the mode dimension and 
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Define the distance between two-time series Y(i) and Y(j) 

as shown in Eq(8): 
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The fuzzy affiliation function is introduced, and the fuzzy 

function is utilized to calculate the similarity between the 

time series Y(i) and Y(j) as shown in Eq(9): 
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In this equation, r is the similarity tolerance limit, 

, 1,2, , 1i j N m= − + , and 
i j

. 

The defining function is shown in Eq(10): 

 ( )
1 1

,

1 1,

1 1

1

N m N m
m

i j

i j

m

j i

D
N m N

i
m

− + − +

= = 


 

=  
− + − 

   (10) 

The fuzzy entropy of the original time series is shown in 

Eq(11): 

 ( ) ( ) ( )1, lim ln lnm m

N
FuzzyEn m r r r+

→
 =  −   (11) 

For a finite length time series, the fuzzy entropy is 

estimated as shown in Eq(12): 

 ( ) ( ) ( )1, , ln lnm mFuzzyEn m r N r r+=  −   (12) 

 

B. Fuzzy Entropy of Vibration Signals under DC Bias 

Magnetization 

Vibration signals were monitored at five different 

locations, namely A, B, C, D, and E, situated at the top of 

the core and enclosure, as depicted in Fig. 8. Various DC 

currents were injected into the neutral point of the 

transformer, and the corresponding vibration waveforms 

were measured. To mitigate the impact of system noise 

present in the experiments, the five sets of measurements 

underwent CEEMD-VAE filtering. In this study, FuzzyEn 

was calculated using established parameter values of m = 2 

and r = 0.2 std (x) across DC currents ranging from 0 to 3.2 

A. The FuzzyEn calculations for the five sets of results are 

presented in Table IV. 

The data in Table IV indicate that the FuzzyEn values for 

all groups are less than 1. Groups A and B exhibit 

significantly higher values compared to Groups C, D, and E. 

This consistency across all groups suggests a common trend. 

The attenuation of high-frequency components during 

transmission from the core to the shell may contribute to this 

phenomenon. Additionally, Fig. 12 and Fig. 13 reveal that 

the waveforms of core vibration are more complex than 

those of shell vibration. This observation suggests that 

FuzzyEn accurately reflects the chaotic nature of the 

vibration signal. 

TABLE IV 

FUZZYEN OF VIBRATION SIGNALS  

DC(A) A B C D E 

0 0.8428 0.7264 0.459 0.6683 0.6027 

0.4 0.886 0.8144 0.5315 0.7231 0.6825 

0.8 0.9069 0.8323 0.5515 0.7493 0.6813 

1.2 0.9252 0.8473 0.5718 0.8259 0.7274 

1.6 0.9408 0.8229 0.5419 0.7967 0.6968 

2 0.9232 0.8295 0.5301 0.8229 0.692 

2.4 0.9032 0.8095 0.5001 0.8029 0.652 

2.8 0.8532 0.7695 0.4301 0.7429 0.602 

3.2 0.8032 0.7295 0.4294 0.7029 0.592 

 

C. Fuzzy Entropy Curve Analysis 

A cubic spline interpolation function is used to fit the 

FuzzyEn values and derive the variation rule of the FuzzyEn 

value under DC bias, and the results are shown in Fig. 18. 
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Fig.18.  FuzzyEn change with DC 
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Fig.19.  FuzzyEn Differential Curve with DC Current 
 

It is observed that all five FuzzyEn curves exhibit an 

initial increase followed by a decrease as the DC bias 

intensifies. Fig. 19 illustrates the differential curves of each 

FuzzyEn along with the range of extreme values for the five 

curves. The results indicate that the maximum FuzzyEn 

value occurs at approximately 1.5 A on the left and right 

sides of the core (Groups A and B); on the left and right 

sides of the housing (Groups C and E), the maximum value 

is around 1 A. In the middle of the housing (Group D), the 

maximum FuzzyEn value is approximately 2 A. 

When the signal comprises solely the fundamental 

frequency, the FuzzyEn value is typically low, indicating 

minimal signal complexity. As DC bias intensifies, it 

influences the vibration signal, leading to a gradual increase 

in odd harmonics. During this phase, the fundamental 

frequency persists as the dominant component, while 

harmonics serve as secondary elements. Consequently, the 

FuzzyEn value rises, signifying increased signal complexity. 

The core reaches saturation when the FuzzyEn value of the 

vibration signal attains its peak. Subsequently, as odd 

harmonics surpass the fundamental frequency, the signal's 

main components transition to harmonics, resulting in 

decreased signal complexity. At this point, the FuzzyEn 

value decreases. The DC bias condition of the transformer 

core can be evaluated by monitoring changes in the FuzzyEn 
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value. Real-time monitoring of transformer vibrations using 

the FuzzyEn value facilitates the analysis of the DC bias 

condition and determination of the iron core's saturation 

state. Additionally, by analyzing the FuzzyEn value and the 

differential curve under DC bias, it can be concluded that 

the iron core is in a saturation state when the differential 

curve is positioned above the zero threshold. 

The observed phenomenon can be elucidated through the 

concept of magnetostriction in the iron core. When DC 

flows into the neutral point, the magnetic flux within the 

core intensifies to the extent that it enters the saturation 

region. The pronounced nonlinearity of magnetostriction 

exacerbates this effect, increasing vibration harmonics. As 

per the obtained results, it's evident that under DC bias, odd 

harmonics experience significant enhancement while even 

harmonics remain largely unaffected. Additionally, FuzzyEn 

serves to evaluate the complexity of the signal, enriching the 

sequence composition of the harmonics. The FuzzyEn 

increases until the DC reaches approximately 1 A, after 

which it remains relatively unaffected by further changes in 

DC. However, as the DC bias exceeds approximately 2 A, 

odd harmonics become the dominant components of the 

signal, leading to a decrease in the even harmonics. 

Consequently, the complexity of the signal decreases with 

the increase in odd harmonics. In conclusion, the variation 

in FuzzyEn allows for the analysis of the DC bias condition 

of the transformer core. The differential curve saturates in 

the region where the iron core transitions past zero, 

providing insight into the core's saturation state. 

 

III. CONCLUSION 

In this paper, CEEMD (Complementary Ensemble 

Empirical Mode Decomposition) is utilized to process 

vibration signals from transformers. CEEMD adaptively 

decomposes these signals into Intrinsic Mode Functions 

(IMFs), which are then reconstructed using a Variational 

Autoencoder (VAE). This approach aims to enhance the 

clarity of vibration signals by selectively removing noise 

and isolating specific frequency components. 

A sophisticated vibration testing system is employed to 

monitor five strategic points on the transformer core and its 

casing. Through the application of CEEMD decomposition 

and subsequent reconstruction, researchers conduct a 

comparative analysis of vibration patterns under standard 

operational conditions and during DC bias. The study 

reveals that DC bias significantly alters the vibration 

characteristics of the transformer core and casing, 

particularly by nonlinearly increasing odd harmonics while 

keeping even harmonics relatively stable across varying DC 

levels. Another crucial element of the study is the 

employment of FuzzyEn (Fuzzy Entropy) as a method for 

assessing the onset of DC bias in transformers. By 

examining the vibrations at these five testing points, 

researchers demonstrate that changes in FuzzyEn values and 

their differential curves accurately reflect the degree of core 

saturation caused by DC bias. The findings of this research 

emphasize that the iron core transitions into a saturation 

region when the FuzzyEn value of the vibration signal 

reaches its maximum, and the differential curve saturates 

beyond the zero thresholds. 

Ultimately, real-time monitoring of transformer vibrations, 

integrated with FuzzyEn analysis, has proven to be an 

effective approach for assessing DC bias conditions and 

determining the saturation state of the iron core. This 

capability is essential for ensuring the reliability of power 

grid operations, particularly in situations where severe DC 

bias may occur, requiring prompt corrective actions. 
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