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Abstract—This paper addresses the issue of event-triggered
stabilization for neural networks vulnerable to replay attacks.
According to the proposed event triggering mechanism and
controller, the neural network is represented as a switched
closed-loop system. Through the selection of a suitable Lya-
punov function and applying Jensen’s inequality, a criterion to
ensure the mean square exponential stability of the system is
established in the form of linear matrix inequalities. Building
on this, a co-design method for the event trigger matrix and
controller gain is given. Finally, a numerical example is used
to verify the effectiveness of the method.

Index Terms—Neural network, event-triggered control, re-
play attack, exponential stability.

I. INTRODUCTION

S INCE Walter Pitts and Warren McCulloch first proposed
the concept of neural networks (NNs) in the early 20th

century [1], NNs have been utilized in various fields such
as image classification [2, 3], associative memory [4], image
encryption [5], and pattern recognition [6, 7]. Stability is
crucial for most applications, yet NNs often exhibit unstable
phenomena such as chaos [8], oscillation [9], and bifurcation
[10]. Therefore, maintaining the stability of NNs has been
a primary research focus. To meet this goal, numerous
studies have proposed a range of control strategies, including
impulse control [11], non-fragile control [12], fixed-time
periodic control [13], PID control [14], and sampled-data
control [15, 16].

Within the automation community, event-triggered control
(ETC), as a refinement of sampled-data control, has be-
come increasingly popular because it ensures ideal control
performance and reduces the overuse of communication
channels in digital networks [17–19]. In this strategy, the
event generator sends a signal to the controller only when
system state changes exceed a preset threshold. With this
approach, ETC effectively lowers the frequency of controller
updates, conserving computational and network resources.
Presently, a vast array of literature focuses on maintaining
NN stability via ETC; see, e.g., [20–25].

However, as a networked control scheme, the event genera-
tor is susceptible to network attacks during data transmission.
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A common attack, the replay attack, involves an attacker
recording the information sequence from the sensor and ma-
liciously substituting channel data with previously captured
legitimate data to disrupt system operation [26, 27]. Notably,
the once sensational Stuxnet virus successfully exploited
such an attack [28]. Consequently, defending against replay
attacks has emerged as an urgent issue, requiring further
research and innovative solutions.

Inspired by the preceding analysis and discussions, this
paper aims to solve the event-triggered stabilization problem
for NNs under replay attacks. Through the proposed event
triggering mechanism (ETM) and controller, the NN is re-
modeled as a switched closed-loop system (CLS). Based on
the constructed Lyapunov function and utilizing Jensen ’s
inequality, a theorem guaranteeing the mean square expo-
nential (MSE) stability of the CLS is given in the form of
linear matrix inequalities. Subsequently, the design method of
the event trigger matrix and the controller gain are presented
based on the proposed theorem. Finally, the effectiveness of
the results is verified by a numerical example.

The remainder of this paper is organized as follows:
Section II outlines the NN model, ETM, replay attack model,
and the issue to be addressed. Section III details the main
results, and Section IV provides an example to illustrate
the effectiveness of the proposed method. Finally, Section
V offers the conclusion.

Notation. Throughout this paper, col{·} represents a col-
umn vector, E{·} indicates the expectation operator, and
diag{·} denotes a block-diagonal matrix. Z > 0 indicates
that Z is symmetric positive definite, He{Z} represents the
sum of Z and its transpose ZT , and λmin(Z) (λmax(Z))
denotes its minimum (maximum) eigenvalue.

II. PRELIMINARIES

A. NN model

Consider a NN as follows

ζ̇(t) = Aζ(t) + u(t) +Bhh(ζ(t)), (1)

in which ζ(t) ∈ Rn and u(t) ∈ Rm denote the state and
control input; A ∈ Rn×n and Bh ∈ Rn×n are known
NN matrices. h(·) = col{h1(·), h2(·), · · · , hn(·)} ∈ Rn is
a nonlinear function that satisfies the following assumption:

Assumption 1. The nonlinear function hi(·) is continuous
and bounded if it fulfills hi(0) = 0 and the following
condition:

0 ≤ hi(p2)− hi(p1)

p2 − p1
≤ ji, i = 1, 2, · · · , n,

in which p1, p2 ∈ R, p1 6= p2, and ηi > 0 is a constant. To
simplify notation, we define J = diag{j1, j2, · · · , jn}.
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Fig. 1. The ETC framework for NNs under replay attacks.

B. ETM

To save limited network communication resources, we
propose an ETM as follows:

tl+1 = min{t ≥ tl + h | [ζ(t)− ζ(tl)]
TΦ[ζ(t)

− ζ(tl)] > σζT (t)Φζ(t)}, (2)

where tl denotes the most recent trigger moment, h repre-
sents the sample interval, σ means the trigger threshold, and
Φ indicates the event trigger matrix.

C. Replay attacks

As shown in Fig. 1, we assume that the network com-
munication channel is vulnerable to replay attacks. In this
case, an attacker can intercept and record the signals in the
channel. When a replay attack occurs, the attacker replaces
the transmitted signal with the previously recorded signals.
Based on the above discussion, the signal received by the
controller can be expressed as

ζ(t) = α(t)ζ(tr) + (1− α(t))ζ(tl), (3)

where ζ(tr) represents the maliciously replaced signal. α(t)
is a Bernoulli variable, which indicates whether a replay
attack occurs.

D. Formulation of issue

According to the presented ETM, the controller under
replay attacks can be written as:

u(t) = α(t)Kζ(tr) + (1− α(t))Kζ(tl), (4)

in which K denotes the controller gain.
Subsequently, we define Ξ1

l = [tl, tl + h) and Ξ2
l = [tl +

h, tl+1), under controller (4), NN (1) can be re-described as:

ζ̇(t) = [A+ (1− α(t))K]ζ(t) + α(t)Kζ(tr)

+Bhh(ζ(t))− (1− α(t))K

∫ t

tl

ζ̇(s)ds, t ∈ Ξ1
l ,

ζ̇(t) = [A+ (1− α(t))K]ζ(t) + α(t)Kζ(tr)

+Bhh(ζ(t)) + (1− α(t))Ke(t), t ∈ Ξ2
l ,

(5)
where e(t) = ζ(tl)− ζ(t) fulfilling

eT (t)Φe(t) ≤ σζT (t)Φζ(t). (6)

Therefore, the issue regarding event-triggered stabilization
in response to replay attacks can be summarized as follows:
for a given NN (1), design controller (4) such that switched
CLS (5) is mean square exponentially stable under all
acceptable replay attacks.

III. MAIN RESULTS

In this section, we first give the MSE stability criterion
for switched CLS (5), then introduce the co-design method
of the event trigger matrix and controller gain.

A. Stability analysis

Theorem 1. For given scalars ξ ∈ (0,∞), h ∈ (0,∞),
α̂ ∈ [0, 1), σ ∈ [0, 1), and matrices K, J > 0, if there exist
matrices Φ > 0, P > 0, R > 0, S1, S2, Qj , Fj (j = 1, 2, 3),
and diagonal matrix M > 0 such that

Λ̃1
0 =


Π̃01

11 Π̃01
12 Π̃01

13 Π̃01
14 Π̃01

15

∗ Π̃01
22 Π̃01

23 FT2 Bh Π̃01
25

∗ ∗ Π̃01
33 0 0

∗ ∗ ∗ −He{M} BTh F3

∗ ∗ ∗ ∗ Π̃01
55

 < 0, (7)

Λ̃2
0 =



Π̃02
11 Π̃02

12 Π̃02
13 Π̃02

14 Π̃02
15 Π̃02

16

∗ Π̃02
22 QT2 FT2 Bh Π̃02

25 Π̃02
26

∗ ∗ Π̃02
33 0 0 hQT3

∗ ∗ ∗ −He{M} BTh F3 0

∗ ∗ ∗ ∗ Π̃02
55 Π̃02

56

∗ ∗ ∗ ∗ ∗ Π̃02
66

 < 0, (8)

Λ̃1 =


Π̃1

11 Π̃1
12 Π̃1

13 Π̃1
14 Π̃1

15

∗ Π̃1
22 Π̃1

23 FT2 Bh Π̃1
25

∗ ∗ −Φ 0 Π̃1
35

∗ ∗ ∗ −He{M} BTh F3

∗ ∗ ∗ ∗ Π̃1
55

 < 0 (9)

hold, where

Π̃01
11 = 2ξP +He{ (2ξh− 1)

2
S1+FT1 (A+(1− α̂)K)−Q1},

Π̃01
12 =P +

h

2
He{S1} −Q2 − F1 + (A+ (1− α̂)K)TF2,

Π̃01
13 = (2ξh− 1)(S2 − S1) +QT1 −Q3,

Π̃01
14 =FT1 Bh + JTMT ,

Π̃01
15 = α̂FT1 K + (A+ (1− α̂)K)TF3, Π̃

01
22 =hR−He{F2},

Π̃01
23 =h(S2 − S1) +QT2 , Π̃01

25 = α̂FT2 K − F3,

Π̃01
33 = (2ξh− 1)He{S1

2
− S2}+He{Q3},

Π̃01
55 =He{α̂FT3 K},

Π̃02
11 = 2ξP +He{−S1

2
−Q1 + FT1 (A+ (1− α̂)K)},

Π̃02
12 =P −Q2 − F1 + (A+ (1− α̂)K)TF2,

Π̃02
13 =S1 − S2 +QT1 −Q3, Π̃02

14 = FT1 Bh + JTMT ,

Π̃02
15 = α̂FT1 K + (A+ (1− α̂)K)TF3,

Π̃02
16 =hQT1 − (1− α̂)hFT1 K, Π̃

02
22 = He{−F2},

Π̃02
25 = α̂FT2 K − F3, Π̃02

26 = hQT2 − (1− α̂)hFT2 K,

Π̃02
33 =He{−S1

2
+ S2 +Q3}, Π̃02

55 = He{α̂FT3 K},

Π̃02
56 = − (1− α̂)hFT3 K, Π̃02

66 = −he−2ξhR,
Π̃1

11 = 2ξP +He{FT1 (A+ (1− α̂)K)}+ σΦ,

Π̃1
12 =P − F1 + (A+ (1− α̂)K)TF2,

Π̃1
13 = (1− α̂)FT1 K, Π̃1

14 = FT1 Bh + JTMT ,

Π̃1
15 = α̂FT1 K + (A+ (1− α̂)K)TF3,

Π̃1
22 =He{−F2}, Π̃1

23 = (1− α̂)FT2 K,
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Π̃1
25 = α̂FT2 K − F3, Π̃1

35 = (1− α̂)KTF3,

Π̃1
55 =He{α̂FT3 K}.

Then, switched CLS (5) is mean square exponentially stable
under all acceptable replay attacks.

Proof: We select the following Lyapunov function:

V(t) =

{
V0(t) =VP (t) + VR(t) + VS(t), t ∈ Ξ1

l ,
V1(t) =VP (t), t ∈ Ξ2

l ,
(10)

where

VP (t) = ζT (t)Pζ(t),

VR(t) = (tl + h− t)
∫ t

tl

e−2ξ(t−s)ζ̇T (s)Rζ̇(s)ds,

VS(t)=(tl + h− t)
[
ζ(t)
ζ(tl)

]T[He{S1}
2 −S1 + S2

∗ He{S1

2 − S2}

][
ζ(t)
ζ(tl)

]
.

According to the constructed function (10), we can conclude
that:

V(t) ≥ λmin(P )‖ζ(t)‖2, V(0) ≤ λmax(P )‖ζ(0)‖2. (11)

When t ∈ Ξ1
l , by calculating the derivation of V0(t) and

taking its mathematical expectations, we can derive:

E{V̇0(t)} = E{V̇P (t)}+ E{V̇R(t)}+ E{V̇S(t)},

where

E{V̇P (t)} =E{−2ξVP (t)}+2ξζT (t)Pζ(t) + 2ζT (t)P ζ̇(t),

E{V̇R(t)} =E{−2ξVR(t)} −
∫ t

tl

e−2ξ(t−s)ζ̇T (s)Rζ̇(s)ds

+ (tl + h− t)ζ̇T (t)Rζ̇(t),

E{V̇S(t)} =E{−2ξVS(t)}+ (tl + h− t)[ζ̇T(t)He{S1}ζ(t)

+ 2ζ̇T(t)(−S1+S2)ζ(tl)] + [2ξ(tl + h− t)−1]

×
[
ζT(t)

He{S1}
2

ζ(t) +2ζT(t)(−S1 + S2)ζ(tl)

+ ζT (tl)He
{
S1

2
− S2

}
ζ(tl)

]
.

Therefore, we can obtain

E{V̇0(t)} ≤E{−2ξV0(t)}+ 2ξζT (t)Pζ(t)

+ 2ζT(t)P ζ̇(t)+(tl + h− t)ζ̇T (t)Rζ̇(t)

− e−2ξh
∫ t

tl

ζ̇T (s)Rζ̇(s)ds+ (tl + h− t)

× [ζT(t)He{S1}ζ̇(t)+2ζ̇T(t)(−S1+S2)ζ(tl)]

+ [2ξ(tl + h− t)− 1]

[
ζT (t)

He{S1}
2

ζ(t)

+ 2ζT (t)(−S1 + S2)ζ(tl)

+ ζT (tl)He
{
S1

2
− S2

}
ζ(tl)

]
. (12)

Defining

ϕ(t) =
1

t− tl

∫ t

tl

ζ̇(s)ds.

Then, using Jensen’s inequality [29], we can find

−
∫ t

tl

ζ̇T (s)Rζ̇(s)ds ≤ −(t− tl)ϕT (t)Rϕ(t).

On the basis of Assumption 1, for any diagonal matrix M >
0, we can deduce that

0 ≤ −2hT (ζ(t))M [h(ζ(t))− Jζ(t)]. (13)

In addition, by applying the Newton-Leibniz theorem and
CLS (5), we can derive

0 = 2
[
ζT (t)QT1 + ζ̇T (t)QT2 + ζT (tl)Q

T
3

]
× [−ζ(t) + ζ(tl) + (t− tl)ϕ(t)] , (14)

0 = 2
[
ζT (t)FT1 + ζ̇T (t)FT2 + ζT (tr)F

T
3

]
×
[
−ζ̇(t) + (A+ (1− α(t))K)ζ(t) + α(t)Kζ(tr)

+Bhh(ζ(t))− (1− α(t))K(t− tl)ϕ(t)] . (15)

Combining (12)-(15), we can obtain

E{V̇0(t)}+ 2ξE{V0(t)}

≤ tl + h− t
h

µT1 (t)Λ̃1
0µ1(t) +

t− tl
h

µT2 (t)Λ̃2
0µ2(t), (16)

where

µ1(t) = [ζ(t), ζ̇(t), ζ(tl), h(ζ(t)), ζ(tr)],

µ2(t) = [ζ(t), ζ̇(t), ζ(tl), h(ζ(t)), ζ(tr), ϕ(t)].

Based on (16) and conditions Λ̃1
0 < 0 and Λ̃2

0 < 0, we can
establish

E{V̇0(t)}+ 2ξE{V0(t)} ≤ 0. (17)

When t ∈ Ξ2
l , using methods similar to the previous proof,

we can easily get

E{V̇2(t)} ≤ − 2ξE{V2(t)}+ 2ξζT (t)Pζ(t) + 2ζT (t)P ζ̇(t)

+ 2[ζT (t)FT1 + ζ̇T (t)FT2 + ζT (tr)F
T
3 ]

×
[
−ζ̇(t) + (A+ (1− α̂)K)ζ(t)

+α̂Kζ(tr) + (1− α̂)Ke(t) +Bhh(ζ(t))]

− eT (t)Φe(t) + σζT (t)Φζ(t)

− 2hT (ζ(t))M [h(ζ(t))− Jζ(t)]

≤µT3 (t)Λ̃1µ3(t), (18)

where

µ3(t) = [ζ(t), ζ̇(t), e(t), h(ζ(t)), ζ(tr)].

Combining (18) with condition Λ̃1 < 0, we can deduce that

E{V̇1(t)}+ 2ξE{V1(t)} ≤ 0. (19)

Through the constructed Lyapunov function V(t), it is not
difficult to get

VR(tl) =VS(tl) = 0,

lim
t→(tl+h)−

VR(t) = lim
t→(tl+h)−

VS(t) = 0,

which proves the continuity of V(t) at moments tl and tl+h.
Then, for any t ∈ Ξ1

l , it follows from (17) and (19) that

E{V(t)} ≤ e−2ξ(t−tl)E{V(tl)}
≤ e−2ξ(t−tl−1)E{V(tl−1)}
· · ·
≤ e−2ξtE{V(0)}. (20)
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Similarly, for any t ∈ Ξ2
l , we can obtain the same result as

in (20).
Therefore, for any t ∈ Ξ1

l ∪ Ξ2
l , the following inequality

always holds:

E{V(t)} ≤ e−2ξtE{V(0)},

which, in conjunction with (11), implies

E{‖ζ(t)‖} ≤

√
λmax(P )

λmin(P )
e−ξtE{‖ζ(0)‖}. (21)

The proof is completed.

B. Controller synthesis

Based on Theorem 1, we give the co-design method of the
controller gain and event trigger matrix.

Theorem 2. For given scalars ξ ∈ (0,∞), h ∈ (0,∞),
%1 ∈ (0,∞), %2 ∈ (0,∞), α̂ ∈ [0, 1), σ ∈ [0, 1) and matrix
J > 0, if there exist matrices Φ > 0, P > 0, R > 0, F1, S1,
S2, X , Qj (j = 1, 2, 3) and diagonal matrix M > 0 such
that

Λ̄1
0 =


Π̄01

11 Π̄01
12 Π̄01

13 Π̄01
14 Π̄01

15

∗ Π̄01
22 Π̄01

23 %1F
T
1 Bh Π̄01

25

∗ ∗ Π̄01
33 0 Π̄01

35

∗ ∗ ∗ −He{M} BTh F3

∗ ∗ ∗ ∗ Π̄01
55

 < 0, (22)

Λ̄2
0 =


Π̄02

11 Π̄02
12 Π̄02

13 Π̄02
14 Π̄02

15 Π̄02
16

∗ Π̄02
22 Q

T
2 %1F

T
1 Bh Π̄02

25 Π̄02
26

∗ ∗ Π̄02
33 0 0 hQT3

∗ ∗ ∗ −He{M} %2BTh F1 0
∗ ∗ ∗ ∗ Π̄02

55 Π̄02
56

∗ ∗ ∗ ∗ ∗ Π̃02
66

 < 0, (23)

Λ̄1 =


Π̄1

11 Π̄1
12 Π̄1

13 Π̄1
14 Π̄1

15

∗ Π̄1
22 Π̄1

23 %1F
T
1 Bh Π̄1

25

∗ ∗ −Φ 0 Π̄1
35

∗ ∗ ∗ −He{M} %2B
T
h F1

∗ ∗ ∗ ∗ Π̄1
55

 < 0 (24)

hold, where

Π̄01
11 = 2ξP +

(2ξh− 1)

2
He{S1}

+He{FT1 A+ (1− α̂)X −Q1},

Π̄01
12 =P +

h

2
He{S1} −Q2 − F1

+ %1A
TF1 + (1− α̂)%1X

T ,

Π̄01
13 = (2ξh− 1)(S2 − S1) +QT1 −Q3,

Π̄01
14 =FT1 Bh + JTMT ,

Π̄01
15 = α̂X + %2A

TF1 + (1− α̂)%2X
T ,

Π̄01
22 =hR−He{%1F1},

Π̄01
23 =h(S2 − S1) +QT2 , Π̄01

25 = α̂%1X − %2F1,

Π̄01
33 = (2ξh− 1)He{S1

2
− S2}+He{Q3},

Π̄01
55 =He{α̂%2X},

Π̄02
11 = 2ξP +He{−S1

2
−Q1 + FT1 A+ (1− α̂)X},

Π̄02
12 =P −Q2 − F1 + %1A

TF1 + (1− α̂)%1X
T ,

Π̄02
13 =S1 − S2 +QT1 −Q3, Π̄02

14 = FT1 Bh + JTMT ,

Fig. 2. Chaotic behavior.

Π̄02
15 = α̂X + %2A

TF1 + (1− α̂)%2X
T ,

Π̄02
16 =hQT1 − (1− α̂)hX, Π̄02

22 = He{−%1F1},
Π̄02

25 = α̂%1X − %2F1, Π̄02
26 = hQT2 − (1− α̂)h%1X,

Π̄02
33 =He{−S1

2
+ S2 +Q3}, Π̄02

55 = He{α̂%2X},

Π̄02
56 = − (1− α̂)h%2X, Π̄02

66 = −he−2ξhR,
Π̄1

11 = 2ξP +He{FT1 A+ (1− α̂)X}+ σΦ,

Π̄1
12 =P − F1 + %1A

TF1 + (1− α̂)%1X
T ,

Π̄1
13 = (1− α̂)X, Π̄1

14 = FT1 Bh + JTMT ,

Π̄1
15 = α̂X + %2A

TF1 + (1− α̂)%2X
T ,

Π̄1
22 =He{−%1F1}, Π̄1

23 = (1− α̂)%1X,

Π̄1
25 = α̂%1X − %2F1, Π̄1

35 = (1− α̂)%2X
T ,

Π̄1
55 =He{α̂%2X}.

Then, when the event trigger matrix is Φ and the controller
gain is

K = (FT1 )−1X, (25)

switched CLS (5) is mean square exponentially stable under
all acceptable replay attacks.

Proof: We can rewrite (25) as follows:

X = FT1 K. (26)

Define

F2 = %1F1, F3 = %2F1. (27)

Then, substituting (26) and (27) into (22)-(24) results in

Λ̃1
0 < 0, Λ̃2

0 < 0, Λ̃1 < 0,

which implies (7)-(9), respectively. The proof is completed.

IV. NUMERICAL EXAMPLE

In this section, we use a numerical example to illustrate
the effectiveness of the method presented in Theorem 2.

Consider a Hopfield NN with the following parameters
[30]:

A =

−1 0 0
0 −1 0
0 0 −1

 , Bh =

 1.5 1.995 0.995
−2.1 1.68 0
3.977 −18 1.97

 ,
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Fig. 3. Bernoulli variable α(t).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time(s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
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hi(·) = tanh(·), i ∈ {1, 2, 3}.

Assume that the initial state of the NN is ζ(0) =
[0.16, −0.11, 0.01]T . When there is no control input, the
chaotic behavior of the NN is depicted in Fig. 2.

We choose ξ = 1.5, %1 = 0.1, %2 = 0.1, J =
diag{1, 1, 1}, the probability of replay attacks occurring
α(t) = 0.1, the sample interval h = 0.01, and the trigger
threshold σ = 0.1. According to Theorem 2, the controller
gain and the event trigger matrix can be obtained as follows:

K =

−10.7984 0.9611 1.3261
0.5871 −11.6407 17.7791
0.6071 13.1220 −95.2104

 ,
Φ = 10−8 ×

 0.0832 −0.0012 0.0023
−0.0012 0.1041 0.0166
0.0023 0.0166 0.0697

 .
The trajectory of the Bernoulli variable α(t) is presented in

Fig. 3, the triggering instants and triggering intervals of the
ETM are described in Fig. 4, the evolution of the control
inputs is illustrated in Fig. 5, and the trajectories of the
state of the CLS are shown in Fig. 6. It can be seen that
under the given controller gain and event trigger matrix,
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Fig. 5. The trajectories of control inputs.
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Fig. 6. State trajectories.

the system state quickly converges to 0, thereby proving the
effectiveness of the design method.

V. CONCLUSION

This paper investigated the event-triggered stabilization
problem for NNs under replay attacks. By introducing an
ETM (2) and controller (4), NN (1) was redefined as a
switched CLS (5). Subsequently, a criterion for the MSE
stability of CLS was established in Theorem 1. Based on
Theorem 1, a co-design method for event trigger matrix Φ
and controller gain K were proposed in Theorem 2. Finally, a
Hopfield NN example was given to illustrate the effectiveness
of the proposed method.
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