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Abstract—Addressing issues such as mutual occlusion of
items and small scale of prohibited items in X-ray security in-
spection image detection, we propose an improved X-ray contra-
band detection model based on YOLOv7 named STRay. Firstly,
in the backbone network, the model employs Swin Transformer,
applying a sliding window multi-head self-attention mechanism
to suppress background interference, enabling the network
to focus more on contraband items and reducing the false
negative rate. Secondly, conventional convolutions in E-ELAN
are replaced with deformable dilated convolutions, adjusting
the convolutional kernel’s shape by learning sampling offsets
to better match the contours of contraband items and effectively
address mutual occlusion issues. Lastly, the detection head in the
head section is replaced with an Efficient decoupled detection
head, decoupling separate feature channels for localization and
classification tasks, thereby enhancing the classification and
localization capabilities for small-scale contraband items. The
proposed model is tested on large datasets SIXray, OPIXray,
and PIDray, achieving mAPs of 95.3%, 88.8%, and 83.1%
respectively, effectively improving contraband detection capa-
bilities while maintaining fast detection speeds. Compared to
current mainstream models, it demonstrates certain advance-
ments, providing excellent technical support for ensuring public
safety.

Index Terms—security inspection, YOLOv7, Swin Trans-
former, deformable dilated convolution , efficient decoupled
detection head.

I. INTRODUCTION

IN recent years, with the prosperity of the economy and
advancements in science and technology, there has been

high-quality development of public infrastructure globally.
Particularly, the construction of comprehensive and three-
dimensional public transportation systems such as aviation
and high-speed rail has effectively met the personalized
and diversified travel needs of the people, enhancing the
convenience of travel. However, behind the enjoyment of
these conveniences lies significant security risks. Extreme
cases of individuals carrying prohibited items illegally at
airports and on high-speed trains threaten national and social
security and are not uncommon. Therefore, it is crucial to
strengthen security checks on passengers and their luggage
in transportation hubs and crowded public places. Currently,
luggage security checks primarily rely on security person-
nel to intelligently judge and identify pseudo-color images
generated by X-ray inspection machines. However, during
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peak passenger flows and rapid transit, security personnel
may experience decreased attention due to fatigue, leading to
missed inspections and compromising the safety of people’s
lives and property[1]. In summary, seeking a high-precision
X-ray security image prohibited item detection model to
assist security personnel in completing security checks is of
significant research importance.

Based on deep learning, object detection models can be
classified into two categories according to their algorithm
principles: two-stage and one-stage models. Two-stage mod-
els, represented by the R-CNN series, were initiated in 2014
when Girshick et al. proposed R-CNN, which introduced the
idea of region proposal followed by classification and de-
tection, significantly improving detection accuracy compared
to traditional algorithms[2]. The following year, He et al.
improved R-CNN with Faster R-CNN by introducing region
of interest pooling layers, greatly reducing the time required
for feature extraction[3]. However, two-stage models have a
large number of parameters, leading to a time-consuming
algorithm process that is not suitable for deployment on
terminal devices. In contrast, one-stage models, such as the
YOLO series, SSD[4], and RetinaNet[5], do not require
region proposal and treat object detection as a regression
task, achieving end-to-end detection. One-stage models have
fewer parameters and save a significant amount of time
during the detection process. Among them, the YOLO series
has garnered widespread attention due to its outstanding per-
formance and effective balance between accuracy and speed.
With continuous updates, YOLO models have surpassed two-
stage models in accuracy and are suitable for deployment on
terminal devices. Therefore, this paper will conduct research
based on the YOLO model.

The main task of prohibited item detection in X-ray secu-
rity images is to identify the types of prohibited items and
locate their positions in pseudo-color images. In actual sce-
narios, security checks encounter many inevitable challenges.
Firstly, in X-ray security images, the cluttered arrangement
of items is a common problem. The transmission of X-
rays causes items to overlap, forming occlusions between
them. Additionally, different materials create a complex
background with multiple overlapping colors in pseudo-color
images[6]. Traditional object detection models struggle to
handle the cluttered and overlapping items in pseudo-color
images, resulting in unsatisfactory performance. Secondly,
luggage and backpacks contain various items of different
sizes and types. For prohibited item detection, this presents
a multi-scale, multi-target detection problem, where differ-
ences in scale can lead to the model overlooking small-scale
targets, resulting in missed detections.

Facing the aforementioned challenges, deep learning-
based object detection models have provided a solid theo-
retical foundation for the development of intelligent security
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Fig. 1. YOLOv7 Network Structure

checks, and experts and researchers in the security industry
have achieved significant results. In response to the difficulty
of deploying security models on portable inspection devices,
Ren et al. proposed the LightRay model based on the
YOLOv4 algorithm, utilizing MobileNetv3 as the feature
extraction backbone network[7]. They introduced a shallow
feature enhancement network that combines Feature Pyra-
mid Network (LFPN) and Convolutional Block Attention
Mechanism (CBAM) to strengthen the feature extraction
of small target objects while lightweighting the model.
Addressing the issue of prohibited items occluding each
other, Shao et al. applied a foreground-background separation
model to adaptively learn the foreground features containing
prohibited items[8]. They separated the foreground objects
and background in sample images, enabling the network to
focus more on learning foreground objects and suppressing
background interference. Wei proposed the De-occlusion
Attention Module (DOAM), emphasizing the extraction of
edge and material information of prohibited items from an
attention perspective to enhance the detection capability of
prohibited items in X-ray images[9]. The aforementioned
research has improved the performance of detection algo-
rithms to varying degrees, laying a solid foundation for the
intelligent detection of prohibited items. However, the de-
tection of prohibited items in real-world scenarios still faces
challenges such as occlusion between prohibited items and
weak targets, necessitating further improvement in accuracy
and robustness.

Therefore, this paper designs an improved model based on
YOLOv7 named STRay. The proposed model is validated
and tested on three large public datasets, effectively address-

ing the issues of occlusion between items and the omission of
small-sized targets in contraband detection. In Chapter Five
of this paper, through comparative experiments with other
similar algorithms, the superiority of the improved algorithm
is demonstrated, and the effectiveness of each improvement
point is verified through ablation experiments.

II. PROPAEDEUTICS

The YOLOv7 series algorithm, proposed by Alexey
Bochkovskiy et al., presents notable improvements over
previous iterations of the YOLO series in terms of both
detection accuracy and speed[10]. Among real-time object
detectors capable of achieving over 30 frames per second
on the GPU V100, YOLOv7 demonstrates superior accuracy
and detection rate. YOLOv7’s architecture consists of three
main components: the backbone network, the neck, and the
head. The backbone extracts features from input images,
while the neck merges these features into small, medium,
and large-sized representations. These combined features are
then forwarded to the detection head, which produces the
final detection results. Figure 1 provides a visual depiction
of YOLOv7’s architecture.

The core structure of YOLOv7’s backbone network pri-
marily comprises convolutional layers, Expandable Efficient
Linear Aggregation Network (E-ELAN) modules, MPConv
modules, and SPPCSPC modules. The E-ELAN module,
which is an extension of the original ELAN, leverages tech-
niques such as expansion and shuffling to enhance the net-
work’s learning capacity without disrupting the gradient path.
This results in an increased feature extraction capability for
the network. MPConv enhances the feature layer’s receptive
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Fig. 2. Network architecture and principle of Swin Transformer attention mechanism.

field and integrates it with traditional convolution outputs,
boosting the network’s ability to generalize. Towards the
end of the backbone network, the SPPCSPC module applies
multiple convolution operations alongside parallel pooling to
combat image distortion and extract non-redundant features
in CNNs. In YOLOv7’s feature fusion Neck network, akin
to prior YOLO versions, it employs the Path Aggrega-
tion Feature Pyramid Network (PAFPN) structure [11] and
incorporates the E-ELAN module, effectively aggregating
information across various network paths or feature pyramids
with adaptive receptive fields to enhance detection of small
targets. For its detection head section, YOLOv7 employs
three IDtect detection heads for different target sizes and
utilizes Reparameterized Convolution (RepConv) to intro-
duce learnable parameters into the convolution kernel. This
adaptability allows for better capture of features in data and
thus enhances model performance and generalization ability.

III. STRAY MODEL

STRay is an improvement upon the YOLOv7 model. The
enhanced model first utilizes the Swin Transformer attention
mechanism at the end of the backbone network. It applies
a sliding window multi-head self-attention mechanism to
address the problem of low recognition rates caused by
background interference and sample imbalance in complex
backgrounds. Secondly, in the E-ELAN module, ordinary
convolutions are replaced with deformable dilated convo-
lutions. By learning sampling offsets to adapt to object
deformations, the convolutional kernels better match the con-
tours of prohibited items, effectively addressing the technical
challenge of missed detection caused by mutual occlusion of
prohibited items. Finally, the detection head of YOLOv7 is
replaced with a more efficient decoupled head, decoupling
the localization and classification tasks into separate feature
channels, enhancing the classification and localization capa-
bilities for small-sized prohibited items.

A. Swin Transformer Attention Mechanism

Due to overlapping and stacking of items in X-ray se-
curity inspection images, objects can occlude each other,
and different materials result in a complex background
with overlapping colors after passing through X-rays. This
complexity makes it difficult for detection models to accu-
rately identify and locate prohibited items. Therefore, this
paper embeds the Swin Transformer attention mechanism at
the end of the backbone network of the YOLOv7 model.
Swin Transformer is a self-attention mechanism that re-
places long sequences with a hierarchical sliding window
approach, which can improve detection performance while
minimizing the impact on runtime speed[12]. Traditional
attention mechanisms dynamically emphasize regions of in-
terest and suppress irrelevant background areas by learning
weighted coefficients within the network. In contrast, self-
attention calculates the relevance weights between features
through matrix operations, enabling the model to capture
relationships between features, which is suitable for detecting
and identifying unclear features. The structure of the Swin
Transformer attention mechanism is shown in (a) of Figure
2.

Firstly, the input is a three-channel feature image, which is
segmented using the patch partition module. The segmented
images are then fed into 4 stages for hierarchical attention
computation. Except for stage 1, which uses a Linear Embed-
ding layer, the remaining three stages downsample through
Patch Merging. Within each stage, the Swin Transformer
block serves as the core module for attention computa-
tion. It is constructed by repetitively stacking Window-
based Multi-Head Self-Attention (W-MSA)[13] and Sliding
Window-based Multi-Head Self-Attention (SW-MSA)[14].
In the Swin Transformer Block, as shown in the diagram
on the right in (a), MLP represents Multi Layer Perceptron,
LN represents Layer Normalization, and the output after each
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module is represented by the following formula:

X̂ l = W −MSA
(
LN

(
X l−1

))
+X−1 (1)

X l = MLP
(
LN

(
X̂ l

))
+ X̂ l (2)

X̂ l+1 = SW−MSA
(
LN

(
X l

))
+X l (3)

X l+1 = MLP
(
LN

(
X̂ l+1

))
+ X̂ l+1 (4)

The internal mechanism of the Swin Transformer Block
is illustrated in (b) of Figure 2. Based on the W-MSA, the
feature image is divided into four windows labeled as A, B,
C, and D. Since W-MSA only computes self-attention within
each window, there is no information exchange between
windows. To establish internal connections within the four
windows, the feature image is further partitioned into nine
windows labeled 1 to 9 using SW-MSA. This results in 2.25
times more computations for the 9 windows compared to
the 4 windows. To ensure consistent window numbers for
parallel MSA computation, a strategy involving upward and
leftward shifts is employed to reorganize the 9 windows into
4 windows of equal size as A, B, C, and D. Finally, MSA
computation is performed to output the feature map. Through
subsequent ablation experiments, it was demonstrated that
the use of the Swin Transformer enables the network to focus
more on the recognition and localization of small prohibited
items and effectively suppress background interference in
complex backgrounds.

B. Deformable Dilated Convolution Module

In real-world X-ray security inspection images, contraband
items are often randomly distributed at various locations in
the image with diverse scales and different poses, leading
to the problem of contraband items occluding each other
in security inspection images. Regular CNN models with
ordinary convolutions have fixed geometric structures, and
the geometric structure of convolutional networks formed
by their stacking is also fixed. To enhance the network’s
capability in recognizing objects with complex geometric de-
formations, this paper incorporates Deformable Convolution
v2 within the E-ELAN module, replacing standard convolu-
tions [15]. This approach introduces directional parameters
to each element of the convolutional kernel, enabling it
to dynamically adjust its shape over a wide range during
training. This adaptability allows the kernel to better conform
to the distinctive features of contraband items. The compari-
son between regular convolution and deformable convolution
sampling points is shown in Figure 3. The deformable
convolution depicted in the diagram not only shifts the input
but also enables the adjustment of weights for each position
input. The formula for adjustable deformable convolution can
be expressed as follows:

y(p) =
κ∑

k=1

wk · x(p+ pk +∆pk) ·∆mk (5)

In the equation, ∆pk and ∆mk represent the learnable
offset and adjustment parameters at the k-th position, where
the adjustment parameter ∆mk is within the range [0,1], and

Fig. 3. Comparison between standard convolution and deformable convo-
lution sampling.

Fig. 4. Diagram of cavity convolution expansion rate.

∆pk can take any value. To enhance the deformable con-
volution’s ability to learn geometric transformations, dilated
convolution is applied before using deformable convolution.
Dilated convolution introduces a dilation rate parameter to
define the spacing between convolution kernels, allowing
for different receptive fields by setting different dilation
rates[16]. Dilated convolution effectively expands the re-
ceptive field of output units at minimal computational cost,
achieving this without enlarging the size of the convolution
kernel. Sequentially stacking multiple dilated convolutions
enhances its effectiveness in various applications. In Figure
4, (a) shows a 3× 3 dilated convolution with a dilation rate
of 1, resulting in a receptive field of 9; (b) demonstrates a
3×3 dilated convolution with a dilation rate of 2, leading to a
receptive field of 25; (c) illustrates a 3×3 dilated convolution
with a dilation rate of 4, resulting in a receptive field of
81. Thus, dilated convolution can enlarge the receptive field
without affecting the image resolution.

Experimental verification has shown that applying de-
formable convolution on top of dilated convolution achieves
two main objectives: on one hand, it makes the convolution
kernel shape closer to the characteristics of prohibited items;
on the other hand, it enlarges the receptive field, providing
richer semantic information. By integrating these techniques,
the model not only learns the overall contour but also
gains more detailed information, effectively addressing the
technical challenge of missed detection caused by prohibited
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Fig. 5. Efficient Decoupled Detection Head Structure.

items occluding each other.

C. Efficient Decoupled Detection Head

Because prohibited item detection involves multiple scales
and objects, differences in scale can cause the detection
model to overlook small targets, leading to missed detections.
Therefore, accurate localization information and comprehen-
sive classification information are essential for this task. To
resolve these challenges, the paper introduces the Efficient
Decoupled Detection Head (EDDH) to replace the original
detection head for target prediction [17]. Initially, YOLOv7
employed a coupled detection head where parameters for
classification and localization tasks were shared. However,
this joint processing caused interference between classifi-
cation and regression tasks, impacting detection accuracy.
The EDDH separates these tasks, enabling the network to
concentrate independently on each task. This separation en-
hances the model’s accuracy, particularly in detecting small-
sized targets. Figure 6 illustrates the structure of the Efficient
Decoupled Head.

In Figure 5, the input feature data is subjected to channel
adjustment using a 1 × 1 convolution. Subsequently, the
feature map is fed into two parallel channels. Each channel
consists of a 3 × 3 convolutional layer for extracting fea-
tures. After feature extraction, the upper channel adjusts the
number of feature channels to perform classification tasks.
Meanwhile, the lower channel further splits into two sub-
paths after feature extraction. One sub-path is responsible
for determining bounding box parameters (height, width,
and center coordinates), while the other sub-path focuses on
obtaining confidence parameters. This approach enhances de-
tection accuracy and improves network efficiency compared
to traditional decoupled heads.

IV. DATASETS AND EVALUATION METRICS

A. Experimental Dataset

SIXray[18]: Developed by the Pattern Recognition and
Intelligent Systems Development Laboratory at the Univer-
sity of Chinese Academy of Sciences, the dataset consists of
1,059,231 X-ray luggage images. Within this dataset, 8,929
images are annotated for object detection, focusing on 5
categories of prohibited items: guns, knives, wrenches, pliers,
and scissors. For experimental purposes, these annotated
images were randomly partitioned into training, testing, and
validation sets in an 8:1:1 ratio.

OPIXray[19]: The dataset, constructed by Beihang Uni-
versity, comprises 8,885 X-ray security inspection images.
It includes five categories of knives: Folding Knife(FK),
Straight Knife(SK), Scissors(SC), Utility Knife(UK) and
Multi-tool Knife(MK). In the experiments, the dataset was

Fig. 6. Examples of prohibited items in the SIXray dataset.

randomly divided into training, validation, and testing sets in
a ratio of 8:1:1.

PIDray[20]: A large-scale security inspection image
dataset constructed by the Chinese Academy of Sciences,
comprising 47,677 images containing 12 categories of
prohibited items. These categories include guns, knives,
wrenches, pliers, scissors, hammers, handcuffs, batons,
sprays, power banks, lighters, and bullets. The dataset con-
sists of 29,457 training images and 18,220 test images
(categorized by detection difficulty into 9,482 easy, 3,733
hard, and 5,005 heavily occluded). Due to the diverse range
of prohibited items in this dataset, for this experiment,
images of three detection difficulty levels—easy, hard, and
hidden—are selected separately.

B. Evaluation Metrics

In this paper, the main evaluation metrics for the pro-
hibited item detection in X-ray images include Precision
(P ), Recall (R), Average Precision (AP ), Mean Average
Precision (mAP ), model Parameter count (Params), model
computational complexity (FLOPs), Frames Per Second
(FPS), and Model storage Size (ModelSize). As the eval-
uation metric for model accuracy, the mAP is divided into
mAP@0.5 and mAP@0.5 : 0.95. mAP@0.5 represents the
mAP value when the threshold is set to 50%. mAP@0.95
represents the mAP calculated as the threshold increases
from 50% to 95% in increments of 5%, resulting in mAP
values at different thresholds. In this study, we have chosen
mAP@0.5 as the evaluation metric for model accuracy. A
higher mAP value indicates higher overall model accuracy.
The related metrics are calculated as follows:

P =
TP

TP + FP
(6)

R =
TP

TP + FN
(7)

AP =
TP + TN

TP + TN + FP + FN
(8)

mAP =

∑Num(class)
n=1 AP (n)

TP + TN + FP + FN
(9)

where, TP represents the number of true positive sam-
ples correctly identified; TN represents the number of true
negative samples correctly identified; FP represents the
number of false positive samples incorrectly identified as
positive; FN represents the number of false negative samples
incorrectly identified as negative.
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TABLE I
RESULTS OF COMPARATIVE EXPERIMENTS ON DIFFERENTAL GORITHMS BASED ON SIXRAY DATASET.

Algorithms
AP (%)

mAP (%) FPS
gun knife pliers scissors wrench

Faster R-CNN 97.3 82.4 89.6 85.4 81.2 87.2 17.1
SSD 95.0 81.5 86.2 77.5 76.8 83.4 47.3
DenseNet 87.4 87.2 64.1 87.6 60.6 77.4 40.5
YOLOv3 95.3 79.9 78.1 73.5 74.1 80.2 54.0
YOLOv4 97.3 82.4 89.6 85.4 82.2 87.4 65.6
YOLOv5 98.4 85.2 95.2 85.6 87.5 90.4 78.2
YOLOv7 98.4 89.1 89.5 88.8 87.5 90.7 90.0
MTRay 99.3 91.8 95.7 94.4 95.3 95.3 87.4

TABLE II
RESULTS OF COMPARATIVE EXPERIMENTS ON DIFFERENTAL GORITHMS BASED ON OPIXRAY AND PIDRAY DATASET.

Algorithms
OPIXray PIDray

FK SK SC UK MK Average easy hard hidden Average

Fcos 86.4 68.5 90.2 78.4 86.6 82.0 61.8 51.7 37.5 50.3
SSD 76.9 35.0 93.4 65.9 83.4 70.9 68.1 58.9 45.7 57.6
YOLOv3 92.5 36.1 97.3 70.8 94.4 78.2 72.2 65.1 54.1 63.9
YOLOv5 92.0 65.2 97.9 74.1 93.2 84.5 78.9 73.4 68.1 73.5
YOLOv7 92.3 72.2 98.3 85.0 93.7 88.3 87.5 80.1 71.2 79.6
MTray 92.7 75.7 98.4 82.5 94.9 88.8 91.0 85.4 72.9 83.1

Fig. 7. Examples of prohibited items in the OPIXray dataset.

Fig. 8. Examples of prohibited items in the PIDray dataset.

V. EXPERIMENT AND RESULT ANALYSIS

This paper designs two types of experiments. The first
type is comparative experiments, which verify the overall
effectiveness of the proposed model by conducting experi-
ments on three mainstream object detection models and the
improved model proposed in this paper using the SIXray,
OPIXray and PIDray datasets. The second type is ablation
experiments, using experiments on the SIXray dataset as an
example, where the improvement points are gradually added
to the baseline model to validate the effectiveness of each
module in the proposed model.

A. Experimental Configuration

The study was carried out using the Windows 10 operating
system, utilizing PyTorch 1.12 and GPU NVIDIA RTX3080
for network framework development. The training utilized a
batch size of 8 over 300 epochs. Stochastic Gradient Descent

(SGD) was chosen for optimizing network parameters, start-
ing with a learning rate of 0.01 and a weight decay coefficient
set to 0.005. Additionally, the learning rate adjustments were
made using the cosine annealing algorithm. For pre-training
in our experiments, we utilized the original YOLOv7.pt
weight file as it shares most of its structure with the improved
model during training phase.

B. Contrast experiments

To verify the advancement of the improved model STRay
proposed in this paper and its transferability to contraband X-
ray images, experiments were conducted on three datasets:
SIXray, OPIXray, and PIDray. Additionally, a comparative
analysis was performed with the current mainstream object
detection models: Faster R-CNN, SSD, Fcos[21], YOLOv3,
YOLOv4, YOLOv5 and YOLOv7. The experimental results
are presented in Tables 1 and 2.

To demonstrate the general applicability of the STRay
model, this paper also conducted comparative experiments
on the OPIXray and PIDray datasets. Due to the large
number of categories of prohibited items in the PIDray
dataset and its vast size, samples were divided into three
categories: easy, hard, and hidden, for testing. As shown in
Table 2, the detection accuracy of STRay on the OPIXray
and PIDray datasets reached 88.8% and 83.1%, respectively,
representing improvements of 0.5% and 3.5% compared to
YOLOv7. Since all five categories of prohibited items in the
OPIXray dataset are tools with similar shapes, and when the
blade is placed vertically in the security screening machine,
only a blue line is displayed on the X-ray security image,
the improvement on the OPIXray dataset is not significant.
STRay achieved good detection results on the large-scale
PIDray dataset, with significant improvements in detecting
prohibited items in simple, complex, and heavily obscured
images. The PR curve plots of the YOLOv7 model and
the improved STRay model on the SIXray, OPIXray, and
PIDray datasets are shown in Figure 9. The top image
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Fig. 9. Comparison of PR curves for YOLOv7 and MTRay on three datasets.

displays the PR curve of YOLOv7, while the bottom image
shows the PR curve of the improved STRay proposed in

this paper. It can be observed from the PR curve that the
proposed STRay model provides more accurate identification

Engineering Letters

Volume 32, Issue 10, October 2024, Pages 1854-1861

 
______________________________________________________________________________________ 



TABLE III
RESULTS OF ABLATION EXPERIMENTS ON THE SIXRAY

DATASET.

Model
AP (%)

mAP (%)
gun knife pliors scissors wrench

YOLOv7 98.4 89.1 89.5 88.8 87.5 90.7
YOLOv7+A 98.9 90.7 92.5 91.9 90.4 92.9
YOLOv7+A+B 99.3 91.5 95.0 93.8 94.5 94.8
YOLOv7+A+B+C 99.3 91.8 95.7 94.4 95.3 95.3

of prohibited items in X-ray security images and exhibits
good generalization and robustness.

C. Ablation Experiments

To validate the effectiveness of each improvement com-
ponent on the STRay model, YOLOv7 was used as the
baseline model, and ablation experiments were conducted
by gradually incorporating each improvement module into
YOLOv7. The experimental results are shown in Table 3.
In the table, method A represents strengthening the feature
extraction of contraband items by using Swin Transformer
attention mechanism at the end of the backbone network,
method B represents replacing ordinary convolutions with
deformable dilated convolutions in E-ELAN, and method
C represents replacing the detection head with a more
efficient decoupled head. From the analysis of the table,
it can be observed that the mAP improved by 2.2% after
using Swin Transformer. Replacing ordinary convolutions
with deformable dilated convolutions in E-ELAN increased
mAP by 1.9%. Further, the mAP increased by an additional
0.5% after using the Efficient Decoupled detection head in
the detection head section. Therefore, it can be concluded
that the methods proposed in STRay can effectively improve
the detection accuracy of contraband items.

VI. CONCLUSION

To address the issues of mutual occlusion of items and the
presence of numerous small-sized contraband items in X-ray
security inspection images, this paper proposes the STRay
contraband detection model for X-ray security inspection im-
ages based on YOLOv7. STRay integrates Swin Transformer
self-attention mechanism, deformable dilated convolution
module, and Efficient decoupled detection head into a unified
object detection model. Comparative experiments with other
models demonstrate the advancement and robustness of the
proposed model after improvements. In real-life scenarios,
luggage carried by passengers is often cluttered, and there
is a wide variety of contraband items with diverse shapes.
Future work will focus on enhancing the model’s ability to
detect multi-scale contraband items and further improving
the accuracy of contraband detection.
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