Algorithm for Adjacent Vertex Sum Reducible Edge Coloring of Random Graphs

Jingwen Li, Shucheng Zhang, Rong Luo, Linyu Lan

Abstract—Let graph $G(p, q)$ be a simple graph, if there is a positive integer $k (1 \leq k \leq |E|)$ and the mapping $f: E(G) \rightarrow \{1, 2, …, k\}$, such that for any edge $uv \in E(G)$, when $d(u) = d(v)$, $S(u) = S(v)$, where $S(u) = \sum_{uv \in E(G)} f(uv)$, $d(u)$ represents the degree of point u, then f is the coloring of Adjacent Vertex Sum Reducible Edge of G. The maximum value k is called the Adjacent Vertex Sum Reducible Edge chromatic number of graph G, denoted as $\chi_{AVSREC}(G)$. Based on the existing graph coloring concepts and reducible concepts, this paper proposes a new concept of adjacent vertex sum reducible edge coloring combined with practical problems and designs a new type of adjacent vertex sum reducible edge coloring algorithm.

Index Terms—adjacent vertex sum reducible edge coloring, adjacent vertex sum reducible edge chromatic number, random graphs, algorithm

I. INTRODUCTION

A s an important research topic in graph theory, graph coloring has vital, theoretical and practical significance. Many problems in real life can be transformed into graph coloring problems, such as frequency allocation of communication segment, class scheduling, resource allocation, traffic scheduling, and so on. Graph coloring can be traced back to the famous “four-color conjecture”. In 1965, M. Behzad proposed and studied the total coloring problem of graphs for the first time, and put forward the famous total coloring conjecture. In 1993, A. C. Burris and R. H. Schelp proposed the concept of Vertex Distinguishing Edge Coloring and related conjectures. Subsequently, Professor Zhang Zhongfu proposed the concept of Adjacent Vertex Distinguishing Edge Coloring of graphs based on Vertex Distinguishing Edge Coloring in 2002, and proposed the concept of Reducible Coloring series of graphs based on lemmas and conjectures in 2009. The new concept of Adjacent Vertex Sum Reducible Edge Coloring proposed is based on Adjacent Vertex Distinguishable Edge Coloring and Reducible Edge Coloring of graphs. To solve the Adjacent Vertex Sum Reducible Edge Coloring of random graphs, a new algorithm is proposed in this paper, whose design idea combines random search algorithm, such as mountain searching algorithm, bee swarm algorithm, and genetic algorithm. Then the coloring results obtained by the algorithm are analyzed and some theorems are summarized and proved for several graph classes.

II. PRELIMINARY KNOWLEDGE

This paper mainly discusses the Adjacent Vertex Sum Reducible Edge Coloring of special graphs, such as paths, circles, stars, fans and general linkage graphs.

Definition 1: Assume that $G(V, E)$ is a simple diagram, if any positive integer $k (1 \leq k \leq |E|)$ and mapping $f: E(G) \rightarrow \{1, 2, …, k\}$, for any two points, $u, v \in V(G)$, when $d(u) = d(v)$ and $uv \in E(G)$, there are $S(u) = S(v)$, the $S(u) = \sum_{uv \in E(G)} f(uv)$. f is the Adjacent Vertex Sum Reducible Edge Coloring of G. And $\chi_{AVSREC}(G) = \max \{k | AVSREC \text{ of } G\}$ is Adjacent Vertex Sum Reducible Edge chromatic number. Obviously $\chi_{AVSREC}(G)$ exists.

Definition 2: Suppose that the vertex set of graph G_n is $\{u_1, u_2, …, u_n\}$, and the vertex set of H_m is $\{v_1, v_2, …, v_m\}$. If the graphs G_n and H_m have central nodes, use u_1 or v_1 to denote. $G_n \uparrow H_m$ represents the graph obtained by connecting the central node v_1 of H_m to any vertex of G_n. $V(G_n \uparrow H_m) = V(G_n) \cup V(H_m)$, $E(G_n \uparrow H_m) = E(G_n) \cup E(H_m) \cup \{u_1v_1\}$. An example is shown in figure 1.

Fig. 1. $C_5 \uparrow S_5$

Definition 3: Let the Bunch graph be the concatenation graph of $m(m \geq 2)$ circle graphs of order n ($n \geq 4, n \equiv 0 (mod 2)$), an example is shown in figure 2.

Fig. 2. H_m^n

Definition 4: $Kite : (n, t) − K$ is a graph consisting of a loop graph with vertex n and a road graph with length t.
Definition 5: If a tree graph has the same degree of other nodes except the leaf nodes, this type of graph is called T_{on} graph. Some samples are shown in figure 3.

Fig.3. Graph T_{on}

Lemma 1: For a simple graph G, when $\chi'_{\text{avge}}(G) = k$ exists but $\chi_{\text{avge}}(G) = k + 1$ does not exist, the adjacent vertex sum reducible edge chromatic number of the graph G is k.

Proof: According to Definition 1, Lemma 1 obviously holds.

III. ALGORITHM

A. Preliminary Preparation

According to the definition of Adjacent Vertex Sum Reducible Edge Coloring, this paper divides all graphs into two types, one is graphs with adjacent same degree points, the other is graphs without adjacent same degree points. This article sets up a graph classification function Classify, a balance operator Balance that judges the balance in the process of increasing the color number, and an adjustment operator Surpass. The equilibrium state mentioned here refers to the state where the sum of the chromatic numbers of adjacent points of the same degree is equal and satisfies the continuity of the chromatic numbers.

B. The basic principle of the algorithm

The idea of the AVSREC algorithm is to transform the adjacency matrix of the graph into the initial coloring matrix that meets the requirements of AVSREC, and then increase the chromatic number by adjusting the operator, and make the coloring matrix meet AVSREC again by the balance operator. After many iterations, finally slowly tend to the optimal solution and complete the coloring process.

C. Fake Code

AVSREC Algorithm

Input: The adjacency matrix M of the graph $G(p, q)$

Output: Coloring matrix that satisfies the AVSREC

Begin

1. Calculate the SameDegreeList, maxColor, Balance.
2. Set a flag parameter count = 1. Initialize a matrix FinalAdjust.
3. while (count > 0)
4. count = 0
5. for $i \leftarrow 0$ to n
6. e_i ++
7. count ++
8. if (Surpass)
9. e_i --
10. count --

IV. CONCLUSION AND PROOF

Theorem 1: Suppose P_n is a path of $n(n \geq 2)$ vertices,

$\chi'_{\text{avge}}(P_n) = 2$

Theorem 2: Suppose S_n is a star graph of $n + 1(n > 2)$ vertices, there is

$\chi'_{\text{avge}}(S_n) = n$

Theorem 3: Suppose C_n is a circle graph of n vertices, there is

$\chi'_{\text{avge}}(C_n) = \{1, n \equiv 1 \mod 2\};$

$\{2, n \equiv 0 \mod 2\};$
According to the definition of Adjacent Vertex Sum Reducible Edge Coloring, adjacent points of the same degree must guarantee the same chromatic number, above three theorems are true.

Theorem 4: For friendship graphs $T_{(2,n)} (n \geq 1)$, there is $\chi'_{avr}(T_{(2,n)}) = \Delta$

Proof: Suppose the friendship $T_{(2,n)} (n \geq 1)$ represents a graph composed of n C_3 graphs, u_0 represents the center point, and the other two points of each triangle are represented by $u_i (1 \leq i \leq n, 1 \leq j \leq n)$, the sample is shown in the Figure 5.

Fig.5. Friendship graph $T_{(2,n)}$

According to the definition of AVSREC, the $T_{(2,n)}$ satisfies f coloring regulation

$$f(u_iv_i) = i, \ i = 1, 2, ..., n$$

$$f(u_0u_i) = f(u_0v_i) = 2n-i + 1 (i = 1, 2, ..., n)$$

The color sums of all adjacent 2 degree vertices in the figure are the same, and the chromatic number is equal to 2n. Since the chromatic number of $f(u_0v_i)$ is mapped to 1,2,3, ..., n, $f(u_0u_i)$ and $f(u_0v_i)$ have the same chromatic number, the chromatic numbers of $f(u_0u_i)$ and $f(u_0v_i)$ are mapped to $\{n + 1, n + 2, n + 3, ..., 2n\}$. Therefore, the solution space of the maximum coloring number k of f is $\{1, 2, 3, ..., 2n\}$. When $f(u_1v_1)$=1, $f(u_0u_1)$ = $f(u_0v_1)$ = 2n = Δ, so $\chi'_{avr}(T_{(2,n)}) = \Delta$ (Δ represents the maximum degree in the figure). The partial coloring result graphs of friendship graph are shown in Figure 6.

![Fig.6. Partial coloring result graphs of the $T_{(2,n)}$ graph](image)

Theorem 5: For the fan graph $F_n (n \geq 3)$, there is $\chi'_{avr}(F_n) = 2n - 1$

Proof: Suppose the vertices set of the F_n graph is $V = \{u_0, u_1, u_2, ..., u_n\}$, u_0 represents the center point, u_1 and u_n represent the two 2 degree vertex of the fan graph. When $n \equiv 1 (mod 2)$, the graph F_n satisfies AVSREC, f:

$$f(u_0u_i) = 2i - 1, i = 1, 2, ..., n$$

$$f(u_1u_i+1) = \begin{cases}
2n - 1 - i, i \equiv 1 (mod 2) \\
(i + 1 - i, i \equiv 0 (mod 2). \\
i = 1, 2, ..., n - 1;
\end{cases}$$

When $n \equiv 0 (mod 2)$, the graph F_n satisfies AVSREC, f:

$$f(u_0u_i) = 2i, i = 1, 2, ..., n - 1$$

$$f(u_0u_n) = 2n - 1$$

$$f(u_1u_i+1) = \begin{cases}
2n - 1 - i, i \equiv 0 (mod 2) \\
i = 1, 2, ..., n - 1; \\
i = 1, 2, ..., n - 1;
\end{cases}$$

In both cases, the sum of the chromatic numbers of adjacent three-degree vertices is the same, which is equal to 3n, and the maximum chromatic numbers in the graph is dyed to the number of edges. At the same time, the coloring graphs still satisfy AVSREC. Therefore, for the graph $F_n (n \geq 3)$, $\chi'_{avr}(F_n) = 2n - 1$. Figure 7 shows the partial coloring result graphs of the F_n graph.

![Fig.7. Partial coloring result graphs of the F_n graph](image)

Theorem 6: For the joint graph $C_n \uparrow P_m \uparrow C_n (n \geq 3, m \geq 3)$, there is $\chi'_{avr}(C_n \uparrow P_m \uparrow C_n) = 6$

Proof: $C_n \uparrow P_m \uparrow C_n$ is shown in the Figure 8:

![Fig.8. $C_n \uparrow P_m \uparrow C_n$](image)
When $n \equiv 1 \pmod{2}$, the graph $C_n \uparrow P_m \uparrow C_n$ satisfies f coloring regulation:

$$f(u_{i+1}) = \begin{cases} 6, & i \equiv 0 \pmod{2}; \\ 1, & i \equiv 1 \pmod{2}. \end{cases}$$

Therefore, for the joint graph $C_n \uparrow P_m \uparrow C_n$ satisfies the AVSREC, and the $\chi'_{avcr}(C_n) = 2$.

When $n \equiv 0 \pmod{2}$, the graph $C_n \uparrow P_m \uparrow C_n$ satisfies AVSREC, f:

$$f(u_{i+1}) = \begin{cases} 6, & i \equiv 0 \pmod{2}; \\ 1, & i \equiv 1 \pmod{2}. \end{cases}$$

Therefore, for the joint graph $C_n \uparrow P_m \uparrow C_n$ satisfies the AVSREC, and the $\chi'_{avcr}(C_n) = 2$.

Suppose that when $\chi'_{avcr}(C_n) = 5$, $(n, t) - K$ also has at least one vertex whose color sum $S(u)$ are different from the other degrees of the vertex of 2 degrees. Contradictions with assumptions. Therefore, according to Lemma 1, when $n \equiv 1 \pmod{2}$, $\chi'_{avcr}((n, t) - K) = 4$.

Obviously $(n, t) - K$ graph satisfies the AVSREC, and the $\chi'_{avcr}((n, t) - K) = 4$.

Figure 9 shows the partial coloring result graphs of the $C_n \uparrow P_m \uparrow C_n$ graph.

![Graph 1](image1)

![Graph 2](image2)

Theorem 7: For the kite graph $(n, t) - K$, there is $\chi'_{avcr}((n, t) - K) = 4$.

Proof: Suppose the vertices set of the $(n, t) - K$ graph is $V = V(C_n) \cup V(P_m) = \{u_1, u_2, ..., u_m, v_1, v_2, ..., v_m\}$, where $u_1 = v_1$.

When $n \equiv 1 \pmod{2}$, the graph $(n, t) - K$ satisfies f coloring regulation:

$$f(u_{i+1}) = \begin{cases} 4, & i \equiv 0 \pmod{2}; \\ 1, & i \equiv 1 \pmod{2}. \end{cases}$$

Therefore, for the joint graph $C_n \uparrow P_m \uparrow C_n$ satisfies the AVSREC, and the $\chi'_{avcr}(C_n) = 2$.

When $n \equiv 0 \pmod{2}$, the graph $(n, t) - K$ satisfies f coloring regulation:

$$f(u_{i+1}) = \begin{cases} 4, & i \equiv 0 \pmod{2}; \\ 1, & i \equiv 1 \pmod{2}. \end{cases}$$

Therefore, for the joint graph $C_n \uparrow P_m \uparrow C_n$ satisfies the AVSREC, and the $\chi'_{avcr}(C_n) = 2$.

Figure 10 shows the partial coloring result graphs of the $(n, t) - K$ graph.

![Graph 3](image3)

![Graph 4](image4)

Theorem 8: For the joint graph $C_n \uparrow P_2 \uparrow C_n$ $(n \geq 3)$, there is $\chi'_{avcr}(C_n) = 4$.

Proof: Suppose the vertices set of C_n is $V = \{u_1, u_2, ..., u_n\}$, the vertices set of another C_n connected to P_2 is $V = \{u_1, u_2, ..., u_n\}$, the vertices set of P_2 is $V = \{1, 2\}$, where $u_1 = v_1, u_2 = v_2$. When $n \equiv 1 \pmod{2}$, the graph $C_n \uparrow P_2 \uparrow C_n$ satisfies AVSREC, f:

$$f(u_{i+1}) = \begin{cases} 2, & i \equiv 0 \pmod{2}; \\ 1, & i \equiv 1 \pmod{2}. \end{cases}$$

Therefore, for the joint graph $C_n \uparrow P_2 \uparrow C_n$ satisfies the AVSREC, and the $\chi'_{avcr}(C_n) = 2$. When $n \equiv 0 \pmod{2}$, the graph $C_n \uparrow P_2 \uparrow C_n$ satisfies AVSREC, f:

$$f(u_{i+1}) = \begin{cases} 2, & i \equiv 0 \pmod{2}; \\ 1, & i \equiv 1 \pmod{2}. \end{cases}$$

Therefore, for the joint graph $C_n \uparrow P_2 \uparrow C_n$ satisfies the AVSREC, and the $\chi'_{avcr}(C_n) = 2$. When $n \equiv 0 \pmod{2}$, the graph $C_n \uparrow P_2 \uparrow C_n$ satisfies AVSREC, f:

$$f(u_{i+1}) = \begin{cases} 2, & i \equiv 0 \pmod{2}; \\ 1, & i \equiv 1 \pmod{2}. \end{cases}$$

Therefore, for the joint graph $C_n \uparrow P_2 \uparrow C_n$ satisfies the AVSREC, and the $\chi'_{avcr}(C_n) = 2$. When $n \equiv 0 \pmod{2}$, the graph $C_n \uparrow P_2 \uparrow C_n$ satisfies AVSREC, f:

$$f(u_{i+1}) = \begin{cases} 2, & i \equiv 0 \pmod{2}; \\ 1, & i \equiv 1 \pmod{2}. \end{cases}$$

Therefore, for the joint graph $C_n \uparrow P_2 \uparrow C_n$ satisfies the AVSREC, and the $\chi'_{avcr}(C_n) = 2$. When $n \equiv 0 \pmod{2}$, the graph $C_n \uparrow P_2 \uparrow C_n$ satisfies AVSREC, f:

$$f(u_{i+1}) = \begin{cases} 2, & i \equiv 0 \pmod{2}; \\ 1, & i \equiv 1 \pmod{2}. \end{cases}$$

Therefore, for the joint graph $C_n \uparrow P_2 \uparrow C_n$ satisfies the AVSREC, and the $\chi'_{avcr}(C_n) = 2$. When $n \equiv 0 \pmod{2}$, the graph $C_n \uparrow P_2 \uparrow C_n$ satisfies AVSREC, f:

$$f(u_{i+1}) = \begin{cases} 2, & i \equiv 0 \pmod{2}; \\ 1, & i \equiv 1 \pmod{2}. \end{cases}$$

Therefore, for the joint graph $C_n \uparrow P_2 \uparrow C_n$ satisfies the AVSREC, and the $\chi'_{avcr}(C_n) = 2$. When $n \equiv 0 \pmod{2}$, the graph $C_n \uparrow P_2 \uparrow C_n$ satisfies AVSREC, f:

$$f(u_{i+1}) = \begin{cases} 2, & i \equiv 0 \pmod{2}; \\ 1, & i \equiv 1 \pmod{2}. \end{cases}$$
Assume $\chi_{avr}(C_n \uparrow P_2 \uparrow C_n) = 4$, let $f(u_4u_1) = 4$ or $f(u_4u_1) = 4$. It is also known that the structure of $C_n \uparrow P_2 \uparrow C_n$ graph, when $f(u_4u_1) = 4$ or $f(u_4u_1) = 4$, there is at least one 2-degree vertex whose chromatic number sum is different from the rest vertices of the same degree. Then this would not meet the definition of AVSREC and contradict the assumption. Therefore, according to the Lemma 1, when $n \equiv 1 \pmod{2}$, $\chi_{avr}(C_n \uparrow P_2 \uparrow C_n) = 3$.

When $n \equiv 0 \pmod{2}$, the graph $C_n \uparrow P_2 \uparrow C_n$ satisfies f coloring, f:

$$f(u_{i+1},u_1) = \begin{cases}
4, \ i \equiv 0 \pmod{2}; \ i = 1,2,\ldots,n-1; \\
1, \ i = 1 \pmod{2}.
\end{cases}$$

$$f(u_{i+1}u_1) = \begin{cases}
3, \ i \equiv 0 \pmod{2}; \ i = 1,2,\ldots,n-1; \\
2, \ i = 1 \pmod{2}.
\end{cases}$$

When $n \equiv 0 \pmod{2}$, let $f(u_4u_1) = 6$ or $f(u_4u_1) = 6$. According to the structure of the $C_n \uparrow P_2 \uparrow C_n$ graph, if $f(u_4u_1) = 6$ or $f(u_4u_1) = 6$, there is at least one 2-degree vertex whose chromatic number sum is different from the rest vertices of the same degree. Then this would not meet the definition of AVSREC and contradict the assumption. Therefore, according to the Lemma 1, when $n \equiv 0 \pmod{2}$, $\chi_{avr}(C_n \uparrow P_2 \uparrow C_n) = 4$.

Theorem 9: For the joint graph $B_2 \uparrow P_2 \uparrow S_m$ ($n \geq 3, \ m \geq 2$), there:

$$\chi_{avr}(C_n \uparrow P_2 \uparrow S_m) = \begin{cases}
5, \ n \equiv 0 \pmod{2}, \ m = 2 \\
3, \ n = 1 \pmod{2}, \ m = 2 \\
\Delta + 2, \ m \geq 3
\end{cases}$$

Proof: When $n \equiv 0 \pmod{2}$, $m = 2$, the graph $C_n \uparrow P_2 \uparrow S_2$ meets Adjacent Vertices Sum Reducible Edge Coloring, the coloring results are shown in the Figure 11(a).

When $n \equiv 1 \pmod{2}$, $m = 2$, the graph $C_n \uparrow P_2 \uparrow S_2$ meets Adjacent Vertex Sum Reducible Edge Coloring, the coloring results are shown in the Figure 11(b).

Figure 11 shows the partial coloring result graphs of the $C_n \uparrow P_2 \uparrow S_2$ graph.

When $m \geq 3$, suppose the vertices set of C_n is $V = \{u_1,u_2,\ldots,u_n\}$, the vertices set of S_m is $V = \{v_0,v_1,\ldots,v_m\}$, the vertices set of P_2 is $V = \{v_1,v_2\}$, where $u_1 = v_1, v_0 = v_2$.

The graph $C_n \uparrow P_2 \uparrow S_m$ satisfies AVSREC, f:

$$f(u_{i+1}v_0) = \begin{cases}
1, \ i = 0 \pmod{2}; \ i = 1,2,\ldots,n-1; \\
1, \ i = 1 \pmod{2}.
\end{cases}$$

$$f(u_1v_0) = 3, f(v_0v_1) = 1, \ i = 1,2,\ldots,m.$$
Table 1. Tree graph results within n vertices (3 ≤ n ≤ 19)

<table>
<thead>
<tr>
<th>G(p,q)</th>
<th>Number</th>
<th>Chromatic Number K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>K=2</td>
</tr>
<tr>
<td>(3,2)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(4,3)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(5,4)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>(6,5)</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>(7,6)</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>(8,7)</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>(9,8)</td>
<td>47</td>
<td>1</td>
</tr>
<tr>
<td>(10,9)</td>
<td>106</td>
<td>1</td>
</tr>
<tr>
<td>(11,10)</td>
<td>235</td>
<td>1</td>
</tr>
<tr>
<td>(12,11)</td>
<td>551</td>
<td>1</td>
</tr>
<tr>
<td>(13,12)</td>
<td>1301</td>
<td>2</td>
</tr>
<tr>
<td>(14,13)</td>
<td>3159</td>
<td>6</td>
</tr>
<tr>
<td>(15,14)</td>
<td>7741</td>
<td>14</td>
</tr>
<tr>
<td>(16,15)</td>
<td>19320</td>
<td>30</td>
</tr>
<tr>
<td>(17,16)</td>
<td>48629</td>
<td>99</td>
</tr>
<tr>
<td>(18,17)</td>
<td>123867</td>
<td>160</td>
</tr>
<tr>
<td>(19,18)</td>
<td>317955</td>
<td>384</td>
</tr>
</tbody>
</table>

From the data in the table 1, we can get the proportion of the graphs in the tree graph where the number of stains is equal to the number of edges. As shown in Figure 13, we can see that the proportion of the number of tree graphs within 19 points equal to the number of edges under the corresponding number of points becomes smaller and smaller as the number of points increases.

Fig.13. The proportion of the tree graphs that satisfying \(\chi_{ave}(T_n) = n - 1 \)

According to the results of the algorithm, it can be included that all graphs within 19 points satisfy this theorem. However, due to the limitation of machine computing power and algorithm efficiency, the experiment of larger point tree graph was not carried out. There is the following Conjecture:

Conjecture 1: For the \(T_n(n ≥ 20), \chi_{ave}(T_n) = n - 1 \).

As shown in Figure 14, the partial coloring result graphs of the \(T_n \) graph are given.

Fig.14. Partial coloring results graphs of the \(T_n \) graph
V. CONCLUSION

In this paper, the concepts of Adjacent Vertex Sum Reducible Edge Coloring are proposed based on the existing concepts of graph coloring. By referring to the existing intelligent algorithms, a new algorithm of Adjacent Vertex Sum Reducible Edge Coloring is designed, which calculates for all non-isomorphisms graphs within 20 points, about hundreds of millions of graphs. Some theorems and guesses are given after the analysis of the calculation results.

REFERENCES

JINGWEN LI was born in 1965. He graduated from Northeastern University with a major in computer science and technology in 1989. He is a professor and master supervisor of Lanzhou Jiaotong University. His main research interests include graph theory algorithm and its application.

SHUCHENG ZHANG was born in BinZhou, Shandong Province, China in 1995. He received the BA degree in software engineering from the University of Ludong in 2018. Now he is studying for M. Phil degree in software engineering in Lanzhou Jiaotong University. His research interest is graph theory algorithm with applications. He became a member (M) of CCF in 2021.