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   There are similarities between semidefinite programming 
and linear programming in theory and practice, e.g., duality 
theory (see Bellman and Fan [5]), the role of complementary 
slackness, and efficient solution techniques using 
interior-point methods (see Nesterov and Nemirovski [11], 
Wright, [20]). Semidefinite programming has been 
developed both theoretically and practically for the past few 
yew years, and has become a popular topic due to its 
efficiency in solving optimization problems with the use of 
interior-point methods (Stefanatos and Khaneja, [14], 
Balakrishnan and Vandenberghe [4]).  

  
Abstract—In order to test the efficiency of semidefinite 

programming (SDP), we apply SDP software package to the 
solution of open-loop unstable systems under input saturation.  
And we compare the ease of programming and the execution 
time for solving the problem between the classical approach 
(which applies a nonlinear equation solver to the Kuhn-Tucker 
conditions) and the SDP approach (which exploits 
interior-point algorithms) for three techniques in this paper.  It 
is also shown that, for certain types of optimization problems, 
SDP is indeed very efficient.  However, our examples show that 
SDP has limitations in solving non-convex optimization 
problems.  It is also shown that the technique we proposed, 
namely that of approximating the controllable set inside the 
Lyapunov descent criterion, is better than the controllable set 
found by SDP, even though the execution time is inferior to the 
latter. 
 

Index Terms—Controllable Set, Semidefinite Programming 
(SDP), Lyapunov descent criterion, Kuhn-Tucker Theorem. 
 

I. INTRODUCTION 
  Semidefinite programming (SDP) is an extension of linear 
programming (LP) with vector variables replaced by matrix 
variables and with vector elementwise non-negativity 
constraints replaced by matrix positive semidefiniteness 
constraints. Generally speaking, in semidefinite 
programming, one minimizes a linear function subject to the 
constraint that a linear combination of symmetric matrices be 
positive semmidefinite. A typical example of a semidefinite 
programming problem is  

Semidefinite programming also unifies several standard 
problems (e.g., linear and quadratic programming) and can 
be applied to many engineering problems (see Boyd et al. [6], 
Vandenberghe and Boyd [18]), and combinatorial 
optimizations (see Alizadeh [1], Goemans [8]).  Semidefinite 
programming is an important numerical tool for analysis and 
synthesis in control systems theory (see Vandenberghe and 
Boyd [17], Yao, et al. [21]), and many semidefinite 
programming problems can be solved very efficiently both in 
theory and practice (see Alizadeh, et al. [2], Fujisawa, et al. 
[7], Porta, et al. [13], Toh, et al. [15], and Vandenberghe and 
Boyd [16]). 

In this paper, we applied semidefinite programming to the 
optimization problem of approximating the controllable set 
by using the SDPpack, and then compared it with the 
controllable set proposed by Lee and Hedrick [10], and the 
Lyapunov controllable set studied in our previous works 
[19]. 

  Our results show that the commands usage for SDP are 
only about half of the commands written for the Lagrangian 
technique. Furthermore, the execution time by SDP is shorter. 
However, the controllable set found by SDP is slightly larger 
than the controllable set found by applying the concept 
proposed by Lee and Hedrick, but is smaller than the 
Lyapunov controllable set found by our previous work. 

      
0  )(      subject to

     min             
fxF

xcT
                                      (1) 

where x is a solution vector in  and c is a constant vector 
in  and F is linear with respect to x. We call 

nℜ
nℜ 0 )( fxF  a 

linear matrix inequality because of linearity of F with respect 
to x and is a square matrix. Here, )(xF 0 )( fxF  means that 

is positive semidefinite. )(xF

 

II. LINEAR MATRIX INEQUALITY 
Many problems in control and systems theory can be 
formulated as optimization problems in terms of linear matrix 
inequalities (LMIs), i.e., constraints of the form 
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requirement that be positive semidefinite. There are 
several equivalent definitions for the function of . 

)(xF

F

)(xF 0  )(      subject to
     min             

fxF
xcT

                                  (5) 

Lemma 2.1 The following statements are equivalent for a 
symmetric real matrix  .nn×ℜ∈

where c is a constant vector in and is defined as in 
(1). Then we call the optimization problem (3) a semidefinite 
program (SDP). A semidefinite program is a convex 
optimization problem since the objective and constraints are 
convex: if 

nℜ )(xF

0)( fxF and 0)( fyF , then, for all λ , ,10 ≤≤ λ  

1. F is positive semidefinite. 

2. .  ,0T zFzz ∀≥ nℜ∈

3.  All the eigenvalues of F are positive or zero.   0.  )()1()())1(( fyFxFyxF λλλλ −+=−+  

4. There exists a real matrix such that 
 

nM ×ℜ∈
.MMF T=

n
There are many similarities between semidefinite programs 
and linear programs both in theory and practice, e.g., in 
duality theory, the role of complementary slackness, and 
availability of efficient solution techniques using 
interior-point methods. Foe instance, consider the following 
linear program (LP): 

  The LMI (2) is a convex constraint on x , i.e., the set 
}0  )( | { fxFx is convex. The LMI can represent a wide 

variety of convex constraints on x, e.g., linear inequalities, 
certain forms of quadratic inequalities, matrix norm 
inequalities, constraints arising in control theory, such as 
Lyapunov and convex quadratic matrix inequalities. Many 
conditions can be cast in the form of LMI. 

    
,0      subject to

     min             
≥+ bAx

xcT

in which the inequality denotes a componentwise inequality.  
A vector v is nonnegative, , if and only if the matrix 

 is positive semidefinite 
0≥v

)(vdiag 0  )( fvdiag . Therefore, we 
can express the LP as a semidefinite program with the linear 
matrix inequality ))( bxF +(Ax= diag , i.e., 

  We note that multiple LMIs, (,,0 )(1 Lf Fx m ,0 )fxF  can be 
expressed as a single LMI as ,0))(,),((diag 1 fL xFxF m i.e.,  
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where  .],,[ 1
mn

maaA ×ℜ∈= L

  Nonlinear (convex) inequalities can also be converted into 
the LMI form by applying Schur decomposition: the LMI; 
the LMI 

  A convex quadratic constraint , 

where , can be written as 
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where and S(x) depend 
affinely on x, is equivalently to  

,)()( ,)()( TT xRxRxQxQ == The left-hand side of equation (4) depends affinely on vector 
x, and hence it can be expressed as a linear matrix inequality, 

  0,  )( 110 fL mm FxFxFxF +++=                      (4) ,0)()()()(  ,0)( 1 ff TxSxRxSxQxR −−

where i.e., the inequality of (4) can be represented as an LMI (4). 
Here, represents the requirement that the matrix R(x) 
is positive definite. 
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  As another related example, the LMI 
 Therefore, a general (convex) quadratically constrained 
quadratic program (QCQP) problem in , mx ℜ∈              ,0f⎥

⎦

⎤
⎢
⎣

⎡ −−−
RPB

PBQPAPA
T

T

                   (7) 
,,,2,1   ,0)(      subject to

)(     min             0

kixf
xf

i L=≤where are given constant matrices of 

appropriate sizes, and 

TT RRQQBA ==  , , ,
TPP = is the variable, is equivalent to 

the algebraic Riccati inequality where each kif i ,,0 , L= , is a convex quadratic function of 
the form 

         .0  ,01 fp RQPBPBRPAPA TT +++ −

,)()()( i
T
iii

T
iii dxcbxAbxAxf −−++=             (8)  

or equivalently a general quadratically constrained quadratic 
program problem in , 1),( +ℜ∈ mtx

III. SEMIDEFINITE PROGRAMMING 
We consider the optimization problem of minimizing a linear 
function of variable subject to an LMI: mx ℜ∈
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can be written as  
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We then can put the above QCQP in the SDP form: 

∑
=

+++=
m

i
mii tFFxFxtF

t

1
10 ,0  ),(      subject to

     min             

f
    (10) 

where the variables are and . mx ℜ∈ ℜ∈t

 For a non-convex optimization problem of the form,  

                     (11) 
,,,2,1   ,0)(      subject to

)(     min             0

kixf
xf

i L=≤

where , and the 
matrices may be indefinite, it has been proposed by Shor 
and others that the lower bounds for the minimum value of 

for (11) can be obtained by solving the semidefinite 
programming (with variables 
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             (12) 

We can easily verify that this semidefinite program yields a 
lower bound for the minimum value of of (11). 
Suppose that 

)(0 xf
x satisfies the constraints in the non-convex 

problem (11), i.e., 

    0,  
1
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the semidefinite program (10). Then  
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Therefore, t is indeed a lower bound for the minimum 
value of in (11).  )x(0f

 

IV. SOFTWARE PACKAGES FOR SEMIDEFINITE 
PROGRAMMING 

Several software packages have been developed for the past 
few years for solving the semidefinite program. Here we give 
a brief introduction for one of the software packages applied 
in this paper: 

SDPPACK 

This is a software package for Matlab and is made by 
Alizadeh et al. [2]. 

Semidefinite-Quadratic-Linear Program (SQLP) 

This package solves the primal mixed 
semidefinite-quadratic-linear program of the form 

,0       ,0      ,0                      

,,,1 ,)()()(   subject to

min             
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XCXCXC
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L w

here is a block diagonal symmetric matrix variable, with 
block sizes respectively, each greater than or 
equal to two; is a block vector variable, with block sizes 

respectively, each greater than or equal to two; 

and is a vector of length . The quantities 
and

SX

n  ,2 L

LX
(

SNNN  , , , 21 L

QX

qn 

mkkQ ,,1 ,) L

n , ,1

QC A
0n

= , are also vectors. The quantity 

SXSC • is the trace inner product  

i.e.,

),tr( SS XC

∑ij
( ijSijS X )()C . 

Each of the three inequalities in this primal problem has a 
different meaning. 

 The first kind of inequality is a semidefinite constraint. 
0fSX means that the matrix 

SX is positive 
semidefinite. 

 The second kind of inequality describes a quadratic 
cone constraint. Writing QXx = for brevity, with the 

block structure 
   ,  ])(,,)(,)[( 21 TTqTT xxxx L=
where 
    ],  [ 21

i
n

iii
i

xxxx L=

The constraint i.e., means that, for each 

block i, 
,0QQX ≥ 0Qx ≥

              .)(
2

2
1 ∑

=

≥
in

j

i
j

i xx  

Any convex quadratic constraint can be converted to this 
form. 

 The third kind of inequality is the standard one: 
0≥LX means each component of vector LX is 

nonnegative. 
The dual SQLP is  

Engineering Letters, 17:4, EL_17_4_01
______________________________________________________________________________________

(Advance online publication: 19 November 2009)



 
 

 

  ,~~~ QAPPAT −=+  

          

,0   ,0   ,0                 

,)(                

,)(                

,)(   subject to

     max          

1

1

1

fff LQS

m

k
LLkLk

m

k
QQkQk

m

k
SSkSk

T

ZZZ

CZAy

CZAy

CZAy

yb

∑

∑

∑

=

=

=

=+

=+

=+

 

and .  Our goal is first to find an inner approximation 0>P
)P(Ω  of the controllable set  of our system (13) and (14) 

based on the quadratic Lyapunov function , 
and then to maximize the approximate controllable set 

*Ω

ξξξ PV T=)(
)(PΩ  

by varying the approximation parameter P in such a way that 
the resulting matrix )~~(~ APP += AT−Q remains positive 
definite. 

where and are matrix variables.  , , QS ZZ LZ
We denote the i-th row of matrix K by :,...,1, miki =  

    Algorithm 
This package implements a primal-dual Mehrotra 

predictor-corrector scheme based on the XZ+ZX search 
direction for SDP. 
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V. FINDING ELLIPSOIDAL CONTROLLABLE SETS 
BY SEMIDEFINITE PROGRAMMING 

   We now consider the case of a single input. Define 
Consider a linear time-invariant continuous-time system with 
input saturation 

)()()( tButAxtx +=&                                  (13) 

)),(()( tKxsattu −=                                  (14) 

where  is a given constant matrix,  is a 
given constant matrix,  is the state vector, 

is the control vector, with 
and 
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)(
tu ∈)(
)(tu = )],(tm ⋅sat denotes the saturation 

function. The one-dimensional version of the saturation 
function is defined by  
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Define )).(()(~ txVtV = Taking derivative of )(~ tV along the 
trajectory , we obtain the following cases: )(tx
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where and we componentwise extend its definition to the 
multi-dimensional version: ).~()]()[(~ PAPABKAPPBKAQ TT +−=−+−−Δ   (20) 
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Case 2.  :)( +∈ Htx  positively saturated case, i.e., 1)( =tu  
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            (21) Here we assume that A is not necessarily asymptotically 
stable.  We also assume that the system  is linearly 
stabilizable.  In other words, it is assumed that, without 
saturation, the system would be stabilizable. 

),( BA

where 
Hence there exists at least one matrix K such that  

).( PAPAQ T +−Δ                                            (22) 
  )()()()()( txBKAtBKxtAxtx −=−=&

and  
is asymptotically stable.  Actually it is possible to select the 
location of the system eigenvalues (i.e., the eigenvalues of 
A-BK) arbitrarily.  Hence we assume that matrix K has been 
selected so as to place the system eigenvalues in the desired 
location.  Since BKAA −=

~  is Hurwitz, for every positive 
definite matrix , there exists an unique satisfying Q~ nnP ×ℜ∈

   BB =+ . 

Case 3.  :)( −∈ Htx  negatively saturated case, i.e., 1)( −=tu  
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The above optimization problem with Lyapunov descent 
criterion can be solve by Kuhn-Tucker Theorem, see Wang 
and Chen [19].  Observe that 

We now apply SDP to the above optimization problem 
(26). ))(()(

~
txgtV

dt
d

=                                       (25) 

Since P > 0 , we can find P  such that P P= P .  
Therefore,V ( )ξ can be put in the format of (8).  But Q may 
not be positive definite, and thus we may not be able to 
decompose Q into its square roots. 

 We want to find the maximum level set 
of the Lyapunov 

function that is contained in the descent region 
} )( : {)( rPVrL Tn ≤=ℜ∈= ξξξξ

V
} 0)( : { n ≤ℜ∈Δ ξξ gRg in which the time derivative of the 

Lyapunov function is negative, i.e., 

Note that the optimization problem (25) is exactly in the 
formulation of QCQP as in (7) and (8), except the inequality 
constraint.  We now attempt to rewrite the above 
optimization problem in the QCQP format (7) and (8) r r L r R gg
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   We note that, in Case 1 0~
>Q because P is selected so that 
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>Q .  In other words, because we use only those P that will 
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>+−= APPATQ , the right-hand side for )(~ tV

dt
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is negative: 0. ,0)(0 ≠∀≤ ξξg Hence ,0)( <ξg  
}.0{0 −H∈∀ξ Therefore, the equilibrium point is locally 

asymptotically stable in  However, in Case 2 and Case 3, 
since the open-loop system may be unstable, matrix A may 
not be Hurwitz.  Given a positive definite matrix P that will 
make

.0H

0~
>Q , the Q defined by (22) may or may not be 

positive definite. 

We note that Q is indefinite, we need to apply the 
non-convex optimization technique to the optimization 
problem (7) and (8) to the form of (11) and (12). 
  Recall that a non-convex optimization problem of the form,  
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minimum value of for the above optimization problem 
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(with variables 

.,,1 ,0 ,2)( kicxbxAxtf i
T
ii

T
i L=++=

iA
)(0 xf

t and iτ ) in the following SDP formulation: 

In order to satisfy the Lyapunov descent condition 
0)( <ξg for a given ,ξ we require that for each ,0≠ξ  there 

exists at least one control value ν satisfying 1 ≤
∞

 ν and  

  .02)( <±−= νξξξξ PBQg TT

Then the state space can be divided into the following 
regions: 

nℜ

(a) { }. 0~   0 >ℜ∈= ξξξ QR Tn  If ,0R∈ξ  then .0)( <ξg  
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               (27) 

Proposition Consider the system (13) under feedback (14). 
Suppose the following are true: 

Therefore, we rewrite the optimization problem (26) into the 
form  

.0 
1

2
1

2
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0
  

0
0
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 max             
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f
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
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⎦

⎤
⎢
⎣

⎡
−

K

K

PB
PBQ

t
P
t

T

T

τ

τ
                  (28) 

VI. EXAMPLE 
We first show a famous example of a double integrator (see, 
Athans, et al. [3], Kirk [8]), a single input plant by applying 
three techniques for finding the controllable set of the linear 
time-invariant open-loop unstable system. And then we 
conclude this paper by applying the techniques to a 3D 
submarine case. 
Example 1 Consider the double integrator, a single input 
plant of the form 

                            
⎪⎩

⎪
⎨
⎧

≤≤−

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=

.11

,
1
0

00
01

u

uxx&

1. The open-loop matrix A is unstable; 
2. The closed-loop matrix BKAA −=

~ is asymptotically 
stable. 

Let 0~
>Q . Let P > 0 be a solution to QAPPAT ~~~

−=+ . Let 

 be a level set, where }  |( rPL Tn ≤ℜ∈ ξξ {)r = ξ +ℜ∈r , 

and let  be defined as the 
unsaturated region. Let 

} 1 |  ≤ξ| | {0 ℜ∈= ξ KH n

r~  be the largest number such that 
0)~(L )Hr ⊂ . Then, ~(rL is an asymptotically stable region.) 

  According to the above proposition, we have the following 
optimization problem of the form: 

      
1    subject to   

)(          min       
≥

=

ξ
ξξξ

K
PV T

 

Technique 2 Optimize the set inside the Lyapunov 
descent region. (as stated in (26)) 

       

.01           and       
,0)(    subject to   

)(          min       

≤+
≥++−=

=

+

ξ
ξξξξξ

ξξξ

K
PBPBQg

PV
TTT

T

Technique 3 Approximate the set by semidefinite 
programming. (as stated in (28)) 
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Here, we note that the eigenvalues of the open-loop systems 
are found to be 0, 0. Since there are two open-loop zeros for 
the system, the system is open-loop unstable. Suppose that 
the desired eigenvalues ωσλ i+−=′1 and  for the 
closed-loop system are as follows: 

ωσλ i−−=′2
Figure 1 shows the sets of three approximations for the 

controllable set of case (i) in example 1. The smallest ellipse 
is the controllable set by applying technique 1, in which the 
level is found as .0774.01 =r

2 =r

.1064.0

The outer ellipse is the 
Lyapunov controllable set approximated by Technique 2, in 
which the level is found as ,  while the ellipse in 
between is the controllable set obtained from the non-convex 
optimization technique of SDP (Technique 3), in which the 
level is found as 

1678.0

=t   

.1 ,2  )ii(
.1 ,1  )i(

22

11

==
==

ωσ
ωσ  

For a given Q~ , where 

⎥
⎦

⎤
⎢
⎣

⎡
=

10
01~Q , 

the feedback gain can be selected by the standard pole 
placement technique and can be found, 
respectively, as follows: 

iK
2,1 , =iPi

Figure 2 shows the sets of three approximations for the 
controllable set of case (ii). The smallest ellipse is the 
controllable set by applying technique 1, in which the level is 
found as .012.01 =r

2

 The outer ellipse is the Lyapunov 
controllable set approximated by Technique 2, in which the 
level is found as ,0412.0=r

0

 while the ellipse in between is 
the controllable set obtained from the non-convex 
optimization technique of SDP (Technique 3), in which the 
level is found as .0276.=t  

(i)  [ ] .
375.025.0
25.025.1

, 14 11 ⎥
⎦

⎤
⎢
⎣

⎡
== PK

     The eigenvalues of P are as 1.3164 and 0.3086. 

(ii)  [ ] .
15.01.0
1.015.1

, 37 22 ⎥
⎦

⎤
⎢
⎣

⎡
== PK

     The eigenvalues of P are as 1.1943 and 0.1937. 

Technique 1 Optimize the set inside the linear region. 

(Based on the following proposition in [9]) 

Engineering Letters, 17:4, EL_17_4_01
______________________________________________________________________________________

(Advance online publication: 19 November 2009)



 
 

 

x1

x2

r1 = 0.0774
r2 = 0.1678
t = 0.1210

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 
Figure 1 Comparison of the areas of the three 
approximations for case (i) in Example 1 
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Figure 2 Comparison of the areas of the three 
approximations for case (ii) in Example 1 

 

For both cases, as for the command usage, it takes 21, 40, 
and 14 commands for the first, second, and third technique, 
respectively. And the execution times for SDP is very 
effective It is obviously that it is very efficient to find the 
controllable set by using SDP. However, the area of the 
controllable sets found by the second technique is the largest 
among all the three techniques. 

We now apply the three techniques to the following real case 
from [12], except that our objective is to find the 3D 
controllable sets for the model instead of their objective of 
finding the optimal control. 

 

Example 2 Consider the following linearized model of a 
submarine obtained from Kockumation AB, Malmö, Sweden 
[12]: 

             
,
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with the control constraint 

.005.0  ≤u  

Here we note that the eigenvalues of the open-loop system 
are found as 0, 0, -0.005.  Since there are two open-loop zero 
eigenvalues for the system, the system is open-loop unstable.  
Suppose the desired eigenvalues of the closed-loop system 
are -0.0039, -0.0026 ±0.0021i.  Therefore, by the technique 
of eigenvalues placement, the feedback K is found as 

]102.81029.6107126.8[ 136 −−− ×××=K  

We choose Q~ as 

,
100
010
001

~

⎥
⎥
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⎣

⎡
=Q  

the eigenvalues of P are found as 

.104946.5

,100608.2

,103051.4

1
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×=

×=

λ
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Hence P is positive definite. 

Technique 1 Maximize the stable region inside the linear 
unsaturated region. 
  To find the stable region proposed by Lee and Hedrick [10], 
we formulate the following minimization problem: 

( )
.005.0      subject to

      min       
≥

= Τ

ξ
ξξξ

K
PV

 

The above optimization problem yields the level 
 007.+1.0679e*

1 =r
Figure 3 shows the 3D ellipsoidal controllable set 
approximated by Technique 1 without showing the linear 
unsaturated region.  Figure 4 shows the 3D linear unsaturated 
region and the controllable set fit inside the linear unsaturated 
region. It is clear that the ellipsoid is bounded by the linear 
unsaturated region and tangent to the linear unsaturated 
region. 

 
Figure 3 3D ellipsoidal controllable set approximated by 
Technique 1 

 

Engineering Letters, 17:4, EL_17_4_01
______________________________________________________________________________________

(Advance online publication: 19 November 2009)



 
 

 

 
Figure 4 Linear unsaturated region and 3D controllable set 
approximated by technique 1 

 

Technique 2 Maximize the stable region under Lyapunov 
descent criterion  
To find the stable region under Lyapunov descent criterion, 
we formulate the following minimization problem: 

( )

.005.0                   
,0005.02)()(    subject to

      min       

−≤
≥××−+=
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ξ
ξξξξ

ξξξ

K
PBPAPAg

PV
TTT

007+1.1115e*
2 =r

 The above optimization problem yields the 
level , which is about 4% more than that 
of the level found by Technique 1. 
Figure 5 shows the Lyapunov controllable set for 
approximated by Technique 2 without showing the linear 
unsaturated region.  Figure 6 shows the linear unsaturated 
region and the Lyapunov controllable set. We note that a 
portion of the ellipsoid breaking through the linear 
unsaturated region indicates that indeed the Lyapunov 
controllable set extends beyond the linear unsaturated region, 
i.e., the Lyapunov controllable set is larger than the 
controllable set found inside the linear unsaturated region 
through Technique 1. 

 

Technique 3 Approximate the set by semidefinite 
programming.  

The optimization problem in the LMI form can be written as: 

.0005.0                        
,0005.02                        

,    subject to   
        min          

T

≤+
≤××−

≤

ξK
PxBQxx

tPxx
t

TT
 

The lower bound of the optimization problem can be 
obtained by the following SDP formulation: 
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The optimal objective value is found as 
 which is about 1% less than that of the 

level found by Technique 2. 

*t
,101033.1 7* ×=t

Figure 7 shows the controllable set for approximated by 
SDP without showing the linear unsaturated region.  Figure 8 
shows the linear unsaturated region and the controllable set 
approximated by SDP. 

We note that even though the commands usage for SDP is 
only about half of the commands written for the Lagrangian 
technique of Technique 2, and the execution time for the 
former is much shorter than that of the latter, but the 
controllable set approximated by SDP is slightly smaller than 
the Lyapunov controllable set (about 1%). 

 

VII. CONCLUSION 
In this paper, we applied SDP to the problems of 

approximating the controllable set for the open-loop unstable 
system with input saturation. Our examples showed that there 
is a limitation in applying the SDP to the problem of 
approximating the Lyapunov controllable set. Therefore, the 
alternative non-convex technique of the semidefinite 
programming was applied. Our examples showed that in the 
two-dimensional case, the level found by the non-convex 
optimization technique was about 30% smaller than the one 
for the Lyapunov controllable set and was about 40% more 
than the one for the controllable set inside the linear 
unsaturated region; however, the command usage and 
executing time for the non-convex optimization technique by 
SDP were far superior to those of the conventional way of 
finding the Lyapunov controllable set using the Lagrangian 
technique. In the 3-dimensional submarine example, the level 
of the inner approximation of the controllable set 
approximated by SDP was about 1% smaller than the 
Lyapunov controllable set but 3% more than the level set 
inside the linear unsaturated region. On the other hand, the 
command usage for the non-convex optimization technique 
by SDP was only half of the command usage for the 
Lyapunov controllable set. Furthermore, the execution time 
for the former was far faster than the latter. 
 

           
Figure 5 3D ellipsoidal controllable set approximated by 
Technique 2 
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Figure 6 Linear unsaturated region and 3D controllable set 
approximated by Technique 2 
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Figure 7 3D controllable set approximated by SDP 

 

-500
0

500

-5

0

5

-0.05

0

0.05

x2

3D view of the linear region and inner approximation of the controllable set by SDP

x1

x3

 
Figure 8 Linear unsaturated region and 3D controllable set 
approximated by SDP 
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